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POPULATION AT RISK OF POVERTY
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EXAMPLE

Survey on Income and Living Conditions 2006

Total sample size: n = 34, 389 persons.
Province×gender sample sizes:

(Barcelona,F) (Córdoba,F) (Tarragona,M) (Soria,F)
1483 230 129 17
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NOTATION

• U finite population of size N.

• U partitioned into D subsets U1, . . . ,UD of sizes N1, . . . ,ND ,
called domains or areas.

• s sample of size n drawn from the population U.

• sd = s ∩ Ud sub-sample from domain d of size nd .

• rd = Ud − sd out-of-sample elements from domain d .
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DOMAIN PARAMETERS

• ydj outcome for unit j in area d .

• yd = (yd1, . . . , ydNd
)′ vector of outcomes for area d .

• Target quantities: Possibly non-linear function of yd ,

δd = hd(yd), d = 1, . . . ,D.

• Example: mean of d-th area,

Ȳd =
1

Nd

Nd∑
j=1

ydj .
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DIRECT ESTIMATION

• Based essentially on the area-specific sample data.

• πdj = P(j ∈ sd) inclusion prob., wdj = 1/πdj sampling weight.

• Sampling weights wdj protect against informative sampling
(probability of selection depending on outcomes).

• Example: Horvitz-Thompson direct estimator,

ˆ̄Y DIR
d =

1

Nd

∑
j∈sd

wdjydj .

• Sampling variance Vπ( ˆ̄Y DIR
d ) can be estimated easily with the

area-specific data.
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POVERTY AND INEQ. INDICATORS

• Edj welfare measure for indiv. j in domain d .

• z = poverty line.

• FGT poverty indicator of order α for domain d :

Fαd =
1

Nd

Nd∑
j=1

(
z − Edj

z

)α

I (Edj < z), α ≥ 0.

• When α = 0⇒ Poverty incidence (or at-risk-of-poverty rate)

• When α = 1⇒ Poverty gap

• Other: Quintile share ratio, Gini coef., Sen index, Theil index,
Generalized entropy, Fuzzy monetary/supplementary index.

X Foster, Greer & Thornbecke (1984), Econom.
X Neri, Ballini & Betti (2005), Stat. in Transition 7
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DIRECT ESTIMATORS

• FGT pov. indicator as a mean:

Fαd =
1

Nd

Nd∑
j=1

Fαdj , Fαdj =

(
z − Edj

z

)α

I (Edj < z)

• HT estimator:

F̂DIR
αd =

1

Nd

∑
j∈sd

wdjFαdj .
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DIRECT ESTIMATORS

ADVANTAGES:

• No model assumptions.
• Sampling weights can be used ⇒ Approx. design-unbiased

even under informative sampling.
• Additivity (Benchmarking property):

D∑
d=1

Ŷ DIR
d = Ŷ DIR .

DISADVANTAGES:

• Vπ( ˆ̄Y DIR
d ) ↑ as nd ↓. Very inefficient for small domains.

• Estimator of sampling error very inefficient for small domains.
• Cannot be calculated for out-of-sample areas.
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INDIRECT ESTIMATORS

• Indirect estimator: It borrows strength from other areas by
making some kind of homogeneity assumption across areas
(model with common parameters) that uses auxiliary
information.
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FAY-HERRIOT (FH) MODEL

(i) Linking model:

δd = x′dβ + ud , ud
iid∼ (0, σ2u), d = 1, . . . ,D

σ2u unknown

(ii) Sampling model:

δ̂DIR
d = δd + ed , ed

ind∼ (0, ψd), d = 1, . . . ,D

ud and ed indep., ψd = Vπ(δ̂DIR
d |δd) known ∀d

(iii) Combined model: Linear mixed model

δ̂DIR
d = x′dβ + ud + ed , d = 1, . . . ,D.

X Fay & Herriot (1979), JASA 11
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BEST LINEAR UNBIASED PREDICTOR

• Minimizes the MSE among linear and unbiased estimators.

• Easily obtained by fitting the mixed model:

δ̃BLUPd = x′d β̃ + ũd ,

where

β̃ = β̃(σ2u) =

(
D∑

d=1

γdxdx′d

)−1 D∑
d=1

γdxd δ̂
DIR
d ,

ũd = ũd(σ2u) = γd(δ̂DIR
d − x′d β̃), γd =

σ2u
σ2u + ψd
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GOOD PROPERTY OF THE BLUP

• Weighted combination of direct and “regression synthetic”
estimator:

δ̃BLUPd = γd δ̂
DIR
d + (1− γd)x′d β̃, γd =

σ2u
σ2u + ψd

.

• When δ̂DIR
d is reliable (↓ ψd) or when area heterogeneity is

not well explained by x′d β̃ (↑ σ2u), δ̃BLUPd −→ δ̂DIR
d .

• Otherwise, if δ̂DIR
d unreliable or x′d β̃ reliable, δ̃BLUPd −→ x′d β̃.
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EMPIRICAL BLUP (EBLUP)

• δ̃BLUPd depends on unknown σ2u through β̃ and γd :

δ̃BLUPd = δ̃BLUPd (σ2
u)

• Empirical BLUP (EBLUP) of δd : σ̂2u estimator of σ2u,

δ̂EBLUPd = δ̃BLUPd (σ̂2
u), d = 1, . . . ,D

• The EBLUP remains model-unbiased under certain
conditions (typically satisfied).

• MSE of EBLUP under FH model can be approximated with
o(1/D) bias under normality.
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NESTED ERROR MODEL

• Nested error unit level model:

ydj = x′djβ + ud + edj , j = 1, . . . ,Nd , d = 1, . . . ,D

ud
iid∼ N(0, σ2u), edj

iid∼ N(0, σ2e )

X Battese, Harter & Fuller (1988), JASA

• The distribution of incomes Edj is highly right skewed.

• Select a transformation T () such that the distribution of
ydj = T (Edj) is approximately Normal.

• Assumption: ydj = T (Edj) satisfies the nested error model.
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EB METHOD FOR POVERTY ESTIMATION

• Poverty indicators in terms of yd = (yd1, . . . , ydNd
)′:

Fαd =
1

Nd

Nd∑
j=1

{
z − T−1(ydj)

z

}α

I
{
T−1(ydj) < z

}
= hα(yd).

• Partition yd into sample and out-of-sample: yd = (y′ds , y
′
dr )′

• Best predictor: Minimizes the MSE

F̃B
αd = Eydr

[
Fαd |yds ;β, σ2u, σ

2
e

]
.

• Empirical best (EB) predictor: F̂EB
αd = F̃B

αd(β̂, σ̂2u, σ̂
2
e ).

X Molina and Rao (2010), CJS 16
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MODEL-BASED EXPERIMENT

• Simulate I = 104 populations from the nested-error model.

• For each population i = 1, . . . , 104, compute true domain

FGT poverty indicators F
(i)
αd for α = 0, 1 and d = 1, . . . ,D.

• Take the sample part of each population (assuming SRS
within each domain) and compute EB, direct and ELL
estimates (Elbers, Lanjouw and Lanjouw (2003), Econometrica).

• Approximate true MSEs of EB estimators as

MSE(F̂EB
αd ) =

1

I

I∑
i=1

(
F̂
EB(i)
αd − F

(i)
αd

)2
, α = 0, 1, d = 1, . . . ,D.

• Similarly for direct and ELL estimators.
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MODEL-BASED EXPERIMENT

• Population and sample sizes:

N = 20000, D = 80

Nd = 250, nd = 50, d = 1, . . . ,D

• Variance components:

σ2e = (0.5)2, σ2u = (0.15)2

• Explanatory variables: 2 dummies:

X1 ∈ {0, 1}, p1d = 0.3 + 0.5d/80, d = 1, . . . ,D.

X2 ∈ {0, 1}, p2d = 0.2, d = 1, . . . ,D.

• Coefficients:
β = (3, 0.03,−0.04)′

18
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POVERTY INCIDENCE

• EB much more efficient than ELL and direct estimators.
• ELL even less efficient than direct estimators!

Bias ( %)
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POVERTY GAP

• Same conclusions as for poverty incidence.

Bias ( %)
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HIERARCHICAL BAYES METHOD

• Reparameterization:

ρ = σ2u/(σ2u + σ2e )

• Reparameterized nested-error model:

ydj |ud ,β, σ2e
ind∼ N(x′djβ + ud , σ

2
e ),

ud |ρ, σ2e
ind∼ N

(
0,

ρ

1− ρ
σ2e

)
• Noninformative prior:

π(β, σ2e , ρ) ∝ 1/σ2e

X Rao, Nandram & Molina (2014), Annals of Applied Statistics 21
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HIERARCHICAL BAYES METHOD

• Proper posterior density (provided X full column rank and ρ
is in a closed interval from (0, 1)):

π(u,β, σ2
e , ρ|ys) = π1(u|β, σ2

e , ρ, ys)π2(β|σ2
e , ρ, ys)π3(σ2

e |ρ, ys)π4(ρ|ys)

• Conditional distributions:

ud |β, σ2e , ρ, ys
ind∼ Normal,

β|σ2e , ρ, ys ∼ Normal,

σ−2e |ρ, ys ∼ Gamma

• π4(ρ|ys) not simple but ρ-values can be generated using a
grid method.

X Rao, Nandram & Molina (2014), Annals of Applied Statistics 22



DIRECT ESTIMATION FH MODEL EB METHOD SIMULATIONS EXTENSIONS APPLICATION

COMPARISON WITH FH ESTIMATES

• FH estimates biased because of linearity problems.
• HB≈EB estimates nearly unbiased and much more efficient.

Rel. Bias ( %)
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INFORMATIVE SAMPLING
• HB and EB estimates biased under informative sampling.
• FH estimates with known dependency of inclusion probabilities
on true responses less biased.

Rel. Bias ( %)
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PSEUDO EB

• Best predictor for additive area parameters:

F̃B
αd = Eydr [Fαd |yds ] =

1

Nd

∑
j∈sd

Fαdj +
∑
j∈rd

E (Fαdj |yds)︸ ︷︷ ︸
 ,

• Under the nested-error model:

E (Fαdj |yds) = E (Fαdj |ȳd) −→ E (Fαdj |ȳdw ).

• Pseudo Best predictor for additive parameters:

F̃PB
αd =

1

Nd

∑
j∈sd

Fαdj +
∑
j∈rd

E (Fαdj |ȳdw )︸ ︷︷ ︸
 .
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PSEUDO EB

• Including sampling weights reduces the design bias!
• Pseudo EB estimators do not lose much efficiency.

Rel. Bias ( %)
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OTHER EXTENSIONS

• Existence of two grouping levels −→ EB method under a
two-fold nested-error model.
X Marhuenda, Molina, Morales and Rao (2017), JRSSA

• Particular non linear parameter: Area mean under a model
for the log-transformation of the target variable −→
Explicit exact EB estimator and asymptotic MSE.
X Molina and Mart́ın (2018), AOS

• EB method for poverty estimation assumes normality for
some transformation of the variable of interest −→ Extension
to skewed distributions.
X Graf, Maŕın and Molina (2018), Test
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POVERTY MAPPING IN SPAIN

• Data source: Spanish Survey on Income and Living
Conditions (EU-SILC) of 2006.

• Target: Calculate EB and HB estimates of poverty incidences
and gaps for Spanish provinces by gender.

• Areas: D = 52 provinces for each gender. We fit a separate
model for each gender.

• Transformation: We consider the nested-error model for the
log-equivalized disposable income:
ydj = T (Edj) = log(Edj + k).

• Explanatory variables: indicators of 5 age groups, of having
Spanish nationality, of 3 education levels and of labor force
status (unemployed, employed or inactive).
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HIERARCHICAL BAYES METHOD

• HB estimates practically the same as EB ones. The same in
simulations under the frequentist setup (frequentist validity).

Poverty incidence ( %)
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POVERTY MAPPING IN SPAIN

• Estimated CVs of direct, EB and HB estimators of poverty
incidences for selected provinces crossed with gender:

Province Gender nd Obs. Poor ĈV Dir. ĈV EB ĈV HB

Soria F 17 6 51.87 16.56 19.82

Tarragona M 129 18 24.44 14.88 12.35

Córdoba F 230 73 13.05 6.24 6.93

Badajoz M 472 175 8.38 3.48 4.24

Barcelona F 1483 191 9.38 6.51 4.52
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RESULTS
Poverty incidence ( %): Men

under 15
15 − 20
20 − 25
25 − 30
over 30

Poverty incidence ( %): Women

under 15
15 − 20
20 − 25
25 − 30
over 30

Pov.inc.≥ 30 %, Men: Almeŕıa, Granada, Córdoba, Badajoz, Ávila,
Salamanca, Zamora, Cuenca.

Women: also Jaén, Albacete, Ciudad Real, Palencia, Soria. 31
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RESULTS

Poverty gap ( %): Men

under 5
5 − 7.5
7.5 − 10
10 − 12.5
over 12.5

Poverty gap ( %): Women

under 5
5 − 7.5
7.5 − 10
10 − 12.5
over 12.5

Pov.gap ≥ 12.5 %, Men: Almeŕıa, Badajoz, Zamora, Cuenca.

Women: Granada, Ameŕıa, Badajoz, Ávila, Cuenca. 32
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COMPARISON WITH DIRECT ESTIMATORS

DISADVANTAGES:

• Require model assumptions (model checking important!).
• Not design-unbiased in general =⇒ Sampling weights can

be incorporated to reduce design bias.
• Require adjustment to satisfy the benchmarking property:

D∑
d=1

Ŷd = Ŷ DIR .

ADVANTAGES:

• Very efficient for small domains.
• Estimator of model MSE efficient for small domains as well.
• Can be calculated for out-of-sample areas.
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SOFTWARE

The R package sae contains functions:

• FH model: eblupFH, mseFH.

• Spatial FH model: eblupSFH, mseSFH, pbmseSFH,
npbmseSFH.

• Spatio-temporal FH model: eblupSTFH, pbmseSTFH.

• Nested-error model: eblupBHF, pbmseBHF.

• EB method: ebBHF, pbmseebBHF.

• Other: direct, pssynt, ssd.

• Data sets and examples.
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MERCI BEAUCOUP!!
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