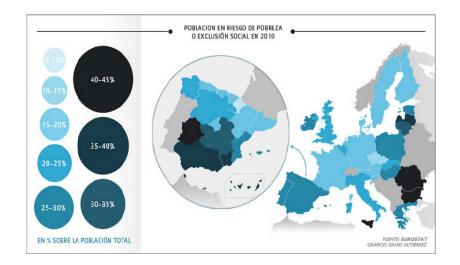
A review of small area estimation methods for poverty mapping

Isabel Molina

Dept. of Statistics, Univ. Carlos III de Madrid

Coauthors: María Guadarrama, Balgobin Nandram, J.N.K. Rao

POPULATION AT RISK OF POVERTY



EXAMPLE

Survey on Income and Living Conditions 2006

Total sample size: n = 34,389 persons.

Province×gender sample sizes:

ſ	(Barcelona,F)	(Córdoba,F)	(Tarragona,M)	(Soria,F)
	1483	230	129	17

NOTATION

- *U* finite population of size *N*.
- U partitioned into D subsets U_1, \ldots, U_D of sizes N_1, \ldots, N_D , called **domains** or **areas**.
- s sample of size n drawn from the population U.
- $s_d = s \cap U_d$ sub-sample from domain d of size n_d .
- $r_d = U_d s_d$ out-of-sample elements from domain d.

DOMAIN PARAMETERS

- y_{dj} outcome for unit j in area d.
- $\mathbf{y}_d = (y_{d1}, \dots, y_{dN_d})'$ vector of outcomes for area d.
- **Target quantities:** Possibly **non-linear** function of y_d ,

$$\delta_d = h_d(\mathbf{y}_d), \quad d = 1, \ldots, D.$$

Example: mean of d-th area,

$$\bar{Y}_d = \frac{1}{N_d} \sum_{j=1}^{N_d} y_{dj}.$$

DIRECT ESTIMATION

- Based essentially on the area-specific sample data.
- $\pi_{dj} = P(j \in s_d)$ inclusion prob., $w_{dj} = 1/\pi_{dj}$ sampling weight.
- Sampling weights w_{dj} protect against **informative sampling** (probability of selection depending on outcomes).
- Example: Horvitz-Thompson direct estimator,

$$\hat{\bar{Y}}_d^{DIR} = \frac{1}{N_d} \sum_{j \in s_d} w_{dj} y_{dj}.$$

• Sampling variance $V_{\pi}(\hat{\hat{Y}}_d^{DIR})$ can be estimated easily with the area-specific data.

POVERTY AND INEQ. INDICATORS

- E_{di} welfare measure for indiv. j in domain d.
- z = poverty line.

 $000 \bullet 000$

• FGT poverty indicator of order α for domain d:

$$F_{\alpha d} = \frac{1}{N_d} \sum_{i=1}^{N_d} \left(\frac{z - E_{dj}}{z} \right)^{\alpha} I(E_{dj} < z), \quad \alpha \ge 0.$$

- When $\alpha = 0 \Rightarrow$ **Poverty incidence** (or at-risk-of-poverty rate)
- When $\alpha = 1 \Rightarrow$ Poverty gap
- Other: Quintile share ratio, Gini coef., Sen index, Theil index, Generalized entropy, Fuzzy monetary/supplementary index.
- √ Foster, Greer & Thornbecke (1984), Econom.
- ✓ Neri, Ballini & Betti (2005), Stat. in Transition

DIRECT ESTIMATORS

• FGT pov. indicator as a mean:

$$F_{\alpha d} = \frac{1}{N_d} \sum_{i=1}^{N_d} F_{\alpha dj}, \quad F_{\alpha dj} = \left(\frac{z - E_{dj}}{z}\right)^{\alpha} I(E_{dj} < z)$$

HT estimator:

$$\hat{F}_{\alpha d}^{DIR} = \frac{1}{N_d} \sum_{i \in \mathfrak{a}} w_{dj} F_{\alpha dj}.$$

DIRECT ESTIMATORS

ADVANTAGES:

- No model assumptions.
- Sampling weights can be used ⇒ Approx. design-unbiased even under informative sampling.
- Additivity (Benchmarking property):

$$\sum_{d=1}^{D} \hat{Y}_d^{DIR} = \hat{Y}^{DIR}.$$

DISADVANTAGES:

- $V_{\pi}(\hat{Y}_{d}^{DIR}) \uparrow$ as $n_{d} \downarrow$. Very **inefficient** for small domains.
- Estimator of sampling error very inefficient for small domains.
- Cannot be calculated for out-of-sample areas.

INDIRECT ESTIMATORS

 Indirect estimator: It borrows strength from other areas by making some kind of homogeneity assumption across areas (model with common parameters) that uses auxiliary information.

FAY-HERRIOT (FH) MODEL

(i) Linking model:

$$\delta_d = \mathbf{x}_d' \boldsymbol{\beta} + u_d, \ u_d \stackrel{iid}{\sim} (0, \sigma_u^2), \quad d = 1, \dots, D$$
 $\sigma_u^2 \text{ unknown}$

(ii) Sampling model:

$$\begin{split} \hat{\delta}_d^{DIR} &= \delta_d + e_d, \ e_d \overset{ind}{\sim} (0, \psi_d), \quad d = 1, \dots, D \\ u_d \ \text{and} \ e_d \ \text{indep.}, \ \psi_d &= V_\pi (\hat{\delta}_d^{DIR} | \delta_d) \ \text{known} \ \forall d \end{split}$$

(iii) Combined model: Linear mixed model

$$\hat{\delta}_d^{DIR} = \mathbf{x}_d' \boldsymbol{\beta} + u_d + e_d, \quad d = 1, \dots, D.$$

BEST LINEAR UNBIASED PREDICTOR

- Minimizes the MSE among linear and unbiased estimators.
- Easily obtained by fitting the mixed model:

$$\tilde{\delta}_{d}^{BLUP} = \mathbf{x}_{d}'\tilde{\boldsymbol{\beta}} + \tilde{u}_{d},$$

where

DIRECT ESTIMATION

$$\tilde{\boldsymbol{\beta}} = \tilde{\boldsymbol{\beta}}(\sigma_u^2) = \left(\sum_{d=1}^D \gamma_d \mathbf{x}_d \mathbf{x}_d'\right)^{-1} \sum_{d=1}^D \gamma_d \mathbf{x}_d \hat{\delta}_d^{DIR},$$

$$\tilde{u}_d = \tilde{u}_d(\sigma_u^2) = \gamma_d(\hat{\delta}_d^{DIR} - \mathbf{x}_d'\tilde{\boldsymbol{\beta}}), \quad \gamma_d = \frac{\sigma_u^2}{\sigma_u^2 + \psi_d}$$

GOOD PROPERTY OF THE BLUP

 Weighted combination of direct and "regression synthetic" estimator:

$$ilde{\delta}_d^{BLUP} = \gamma_d \, \hat{\delta}_d^{DIR} + (1 - \gamma_d) \mathbf{x}_d' \tilde{\boldsymbol{\beta}}, \quad \gamma_d = rac{\sigma_u^2}{\sigma_u^2 + \psi_d}.$$

- When $\hat{\delta}_d^{DIR}$ is **reliable** $(\downarrow \psi_d)$ or when area heterogeneity is not well explained by $\mathbf{x}_d' \tilde{\boldsymbol{\beta}} \ (\uparrow \sigma_u^2), \ \tilde{\delta}_d^{BLUP} \longrightarrow \hat{\delta}_d^{DIR}$.
- Otherwise, if $\hat{\delta}_d^{DIR}$ unreliable or $\mathbf{x}_d'\tilde{\beta}$ reliable, $\tilde{\delta}_d^{BLUP} \longrightarrow \mathbf{x}_d'\tilde{\beta}$.

EMPIRICAL BLUP (EBLUP)

• $\tilde{\delta}_d^{BLUP}$ depends on unknown σ_u^2 through $\tilde{\beta}$ and γ_d :

$$\tilde{\delta}_d^{BLUP} = \tilde{\delta}_d^{BLUP}(\sigma_{\mathsf{u}}^{\mathsf{2}})$$

• **Empirical** BLUP (EBLUP) of δ_d : $\hat{\sigma}_u^2$ estimator of σ_u^2

$$\hat{\delta}_d^{EBLUP} = \tilde{\delta}_d^{BLUP}(\hat{\sigma}_{\mathbf{u}}^2), \quad d = 1, \dots, D$$

- The EBLUP remains model-unbiased under certain conditions (typically satisfied).
- MSE of EBLUP under FH model can be approximated with o(1/D) bias under normality.

NESTED ERROR MODEL

Nested error unit level model:

$$y_{dj} = \mathbf{x}'_{dj}\beta + u_d + e_{dj}, \quad j = 1, \dots, N_d, \quad d = 1, \dots, D$$
$$u_d \stackrel{iid}{\sim} N(0, \sigma_u^2), \quad e_{dj} \stackrel{iid}{\sim} N(0, \sigma_e^2)$$

- ✓ Battese, Harter & Fuller (1988), JASA
- The distribution of incomes E_{di} is highly right skewed.
- Select a transformation T() such that the distribution of $y_{di} = T(E_{di})$ is approximately Normal.
- **Assumption:** $y_{dj} = T(E_{dj})$ satisfies the nested error model.

EB METHOD FOR POVERTY ESTIMATION

• Poverty indicators in terms of $\mathbf{y}_d = (y_{d1}, \dots, y_{dN_d})'$:

$$F_{\alpha d} = rac{1}{N_d} \sum_{i=1}^{N_d} \left\{ rac{z - T^{-1}(y_{dj})}{z}
ight\}^{\alpha} I\left\{ T^{-1}(y_{dj}) < z
ight\} = h_{\alpha}(\mathbf{y}_d).$$

- Partition \mathbf{y}_d into sample and out-of-sample: $\mathbf{y}_d = (\mathbf{y}_{ds}', \mathbf{y}_{dr}')'$
- Best predictor: Minimizes the MSE

$$ilde{F}^{B}_{lpha d} = extbf{E}_{\mathbf{y}_{dr}} \left[extbf{F}_{lpha d} | \mathbf{y}_{ds}; oldsymbol{eta}, \sigma_{u}^{2}, \sigma_{e}^{2}
ight].$$

- Empirical best (EB) predictor: $\hat{F}_{\alpha d}^{EB} = \tilde{F}_{\alpha d}^{B}(\hat{\beta}, \hat{\sigma}_{u}^{2}, \hat{\sigma}_{e}^{2})$.
- ✓ Molina and Rao (2010), CJS

DIRECT ESTIMATION

MODEL-BASED EXPERIMENT

- Simulate $I = 10^4$ populations from the **nested-error model**.
- For each population $i=1,\ldots,10^4$, compute true domain FGT poverty indicators $F_{\alpha d}^{(i)}$ for $\alpha=0,1$ and $d=1,\ldots,D$.
- Take the sample part of each population (assuming SRS within each domain) and compute EB, direct and ELL estimates (Elbers, Lanjouw and Lanjouw (2003), Econometrica).
- Approximate true MSEs of EB estimators as

$$MSE(\hat{F}_{\alpha d}^{EB}) = \frac{1}{I} \sum_{i=1}^{I} \left(\hat{F}_{\alpha d}^{EB(i)} - F_{\alpha d}^{(i)} \right)^{2}, \ \alpha = 0, 1, \ d = 1, \dots, D.$$

• Similarly for direct and ELL estimators.

APPLICATION

MODEL-BASED EXPERIMENT

Population and sample sizes:

$$N = 20000, \quad D = 80$$

 $N_d = 250, \quad n_d = 50, \quad d = 1, \dots, D$

Variance components:

$$\sigma_e^2 = (0.5)^2, \quad \sigma_u^2 = (0.15)^2$$

• Explanatory variables: 2 dummies:

$$X_1 \in \{0, 1\}, \quad p_{1d} = 0.3 + 0.5d/80, \quad d = 1, \dots, D.$$

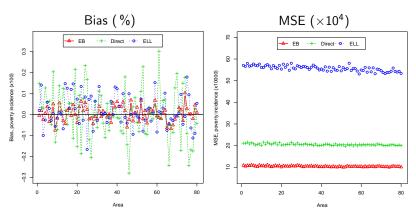
 $X_2 \in \{0, 1\}, \quad p_{2d} = 0.2, \quad d = 1, \dots, D.$

Coefficients:

$$\beta = (3, 0.03, -0.04)'$$

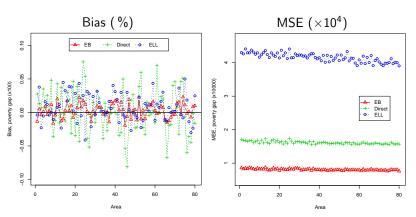
POVERTY INCIDENCE

- EB much more efficient than ELL and direct estimators.
- ELL even less efficient than direct estimators!



POVERTY GAP

• Same conclusions as for poverty incidence.



HIERARCHICAL BAYES METHOD

• Reparameterization:

$$\rho = \sigma_u^2/(\sigma_u^2 + \sigma_e^2)$$

• Reparameterized nested-error model:

$$y_{dj}|u_d, \beta, \sigma_e^2 \stackrel{ind}{\sim} N(\mathbf{x}'_{dj}\beta + u_d, \sigma_e^2),$$

 $u_d|\rho, \sigma_e^2 \stackrel{ind}{\sim} N\left(0, \frac{\rho}{1-\rho} \sigma_e^2\right)$

• Noninformative prior:

$$\pi(\boldsymbol{\beta}, \sigma_e^2, \rho) \propto 1/\sigma_e^2$$

√ Rao, Nandram & Molina (2014), Annals of Applied Statistics 21

HIERARCHICAL BAYES METHOD

• Proper posterior density (provided **X** full column rank and ρ is in a closed interval from (0,1)):

$$\pi(\mathbf{u}, \boldsymbol{\beta}, \sigma_e^2, \rho | \mathbf{y}_s) = \pi_1(\mathbf{u} | \boldsymbol{\beta}, \sigma_e^2, \rho, \mathbf{y}_s) \, \pi_2(\boldsymbol{\beta} | \sigma_e^2, \rho, \mathbf{y}_s) \, \pi_3(\sigma_e^2 | \rho, \mathbf{y}_s) \, \pi_4(\rho | \mathbf{y}_s)$$

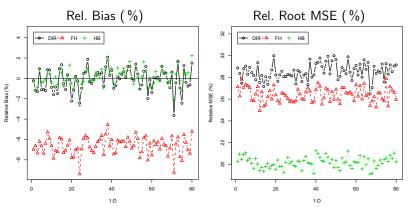
Conditional distributions:

$$u_d | \boldsymbol{\beta}, \sigma_e^2, \rho, \mathbf{y_s} \overset{ind}{\sim} \text{Normal}, \ \boldsymbol{\beta} | \sigma_e^2, \rho, \mathbf{y_s} \sim \text{Normal}, \ \sigma_e^{-2} | \rho, \mathbf{y_s} \sim \text{Gamma}$$

- $\pi_4(\rho|\mathbf{y}_s)$ not simple but ρ -values can be generated using a grid method.
- √ Rao, Nandram & Molina (2014), Annals of Applied Statistics 22

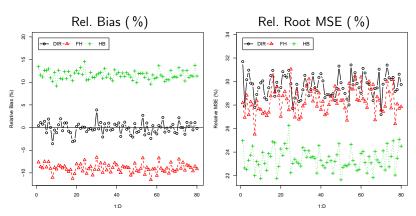
COMPARISON WITH FH ESTIMATES

- FH estimates biased because of linearity problems.
- HB≈EB estimates nearly unbiased and much more efficient.



INFORMATIVE SAMPLING

- HB and EB estimates biased under informative sampling.
- FH estimates with known dependency of inclusion probabilities on true responses **less biased**.



PSEUDO EB

• Best predictor for additive area parameters:

$$\tilde{F}_{\alpha d}^{B} = E_{\mathbf{y}_{dr}} \left[F_{\alpha d} | \mathbf{y}_{ds} \right] = \frac{1}{N_{d}} \left[\sum_{j \in s_{d}} F_{\alpha dj} + \sum_{j \in r_{d}} \underbrace{E(F_{\alpha dj} | \mathbf{y}_{ds})}_{} \right],$$

Under the nested-error model:

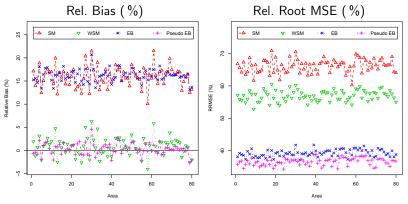
$$E(F_{\alpha dj}|\mathbf{y}_{ds}) = E(F_{\alpha dj}|\overline{\mathbf{y}}_{d}) \longrightarrow E(F_{\alpha dj}|\overline{\mathbf{y}}_{dw}).$$

Pseudo Best predictor for additive parameters:

$$\tilde{F}_{\alpha d}^{PB} = rac{1}{N_d} \left[\sum_{j \in s_d} F_{\alpha dj} + \sum_{j \in r_d} \underbrace{E(F_{\alpha dj} | \bar{y}_{dw})}_{} \right].$$

PSEUDO EB

- Including sampling weights reduces the design bias!
- Pseudo EB estimators do not lose much efficiency.



OTHER EXTENSIONS

- Existence of two grouping levels → EB method under a two-fold nested-error model.
 - ✓ Marhuenda, Molina, Morales and Rao (2017), JRSSA
- Particular non linear parameter: Area mean under a model for the log-transformation of the target variable →
 Explicit exact EB estimator and asymptotic MSE.
 ✓ Molina and Martín (2018), AOS
- EB method for poverty estimation assumes normality for some transformation of the variable of interest → Extension to skewed distributions.
 - √ Graf, Marín and Molina (2018), Test

DIRECT ESTIMATION

POVERTY MAPPING IN SPAIN

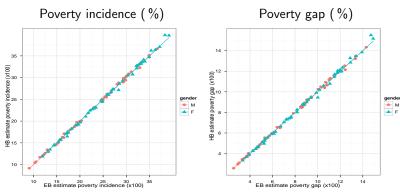
- Data source: Spanish Survey on Income and Living Conditions (EU-SILC) of 2006.
- Target: Calculate EB and HB estimates of poverty incidences and gaps for Spanish provinces by gender.
- Areas: D = 52 provinces for each gender. We fit a separate model for each gender.
- **Transformation:** We consider the nested-error model for the log-equivalized disposable income: $y_{di} = T(E_{di}) = \log(E_{di} + k)$.
- Explanatory variables: indicators of 5 age groups, of having Spanish nationality, of 3 education levels and of labor force status (unemployed, employed or inactive).

APPLICATION

○●○○○○○○

HIERARCHICAL BAYES METHOD

• HB estimates practically the same as EB ones. The same in simulations under the frequentist setup (frequentist validity).



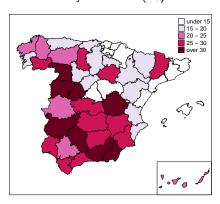
POVERTY MAPPING IN SPAIN

• Estimated CVs of direct, EB and HB estimators of poverty incidences for selected provinces crossed with gender:

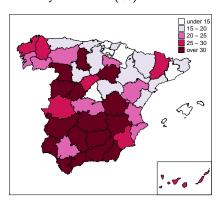
Province	Gender	n _d	Obs. Poor	<i>ĈV</i> Dir.	<i>Ĉ</i> V EB	<i>ĈV</i> HB
Soria	F	17	6	51.87	16.56	19.82
Tarragona	М	129	18	24.44	14.88	12.35
Córdoba	F	230	73	13.05	6.24	6.93
Badajoz	М	472	175	8.38	3.48	4.24
Barcelona	F	1483	191	9.38	6.51	4.52

RESULTS

Poverty incidence (%): Men



Poverty incidence (%): Women

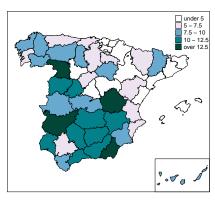


Pov.inc.≥ **30 %**, **Men:** Almería, Granada, Córdoba, Badajoz, Ávila, Salamanca, Zamora, Cuenca.

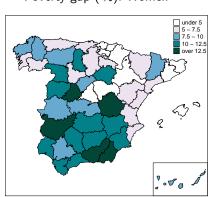
Women: also Jaén, Albacete, Ciudad Real, Palencia, Soria.

RESULTS

Poverty gap (%): Men



Poverty gap (%): Women



 $\textbf{Pov.gap} \geq \textbf{12.5\,\%}, \ \textbf{Men:} \ \mathsf{Almer\'{ia}}, \ \mathsf{Badajoz}, \ \mathsf{Zamora}, \ \mathsf{Cuenca}.$

Women: Granada, Amería, Badajoz, Ávila, Cuenca.

COMPARISON WITH DIRECT ESTIMATORS

DISADVANTAGES:

- Require model assumptions (model checking important!).
- Not design-unbiased in general ⇒ Sampling weights can be incorporated to reduce design bias.
- Require **adjustment** to satisfy the benchmarking property:

$$\sum_{d=1}^{D} \hat{Y}_d = \hat{Y}^{DIR}.$$

ADVANTAGES:

- Very efficient for small domains.
- Estimator of model MSE efficient for small domains as well.
- Can be calculated for out-of-sample areas.

SOFTWARE

The R package sae contains functions:

- FH model: eblupFH, mseFH.
- Spatial FH model: eblupSFH, mseSFH, pbmseSFH, npbmseSFH.
- Spatio-temporal FH model: eblupSTFH, pbmseSTFH.
- Nested-error model: eblupBHF, pbmseBHF.
- EB method: ebBHF, pbmseebBHF.
- Other: direct, pssynt, ssd.
- Data sets and examples.

MERCI BEAUCOUP!!