Estimateurs non paramétriques de la fonction de répartition d'une variable censurée à droite sur petits domaines : approche basée sur un modèle

Sandrine CASANOVA & Eve LECONTE
TSE-R
Université TOULOUSE 1 Capitole

10ème Colloque Francophone sur les Sondages, Lyon 25 octobre 2018

Position du problème

Estimation de la fonction de répartition (fdr) d'une variable d'intérêt censurée à droite sur petits domaines

- \hookrightarrow variable d'intérêt T = durée jusqu'à un événement d'intérêt
- \hookrightarrow très peu d'articles dans le cadre des sondages

Position du problème

Estimation de la fonction de répartition (fdr) d'une variable d'intérêt censurée à droite sur petits domaines

- \hookrightarrow variable d'intérêt T = durée jusqu'à un événement d'intérêt
- \hookrightarrow très peu d'articles dans le cadre des sondages

Exemple d'application

Enquête rétrospective sur l'insertion des jeunes filles diplômées du secondaire en Occitanie, 3 ans après la fin de leurs études

T : temps d'accès au premier emploi

 $\hookrightarrow \mathcal{T}$ censurée à droite pour celles qui n'ont pas trouvé d'emploi à la date de l'enquête

Domaine = $niveau \times type de formation$

Plan

- Estimateurs de la fdr sur petits domaines en présence de censure
 - 1. Estimateurs utilisant uniquement les données du domaine
 - 2. Estimateur empruntant de la force aux autres domaines
- ► Simulations basées sur un modèle
- Exemple d'application
- Perspectives

Notations

Population U (taille N) partitionnée en m domaines U_i (taille N_i) s échantillon de U de taille n

 $s_i = s \cap U_i$ échantillon de taille n_i du domaine U_i .

 t_{ij} valeur de T pour le jème individu du domaine U_i : uniquement observée sur s_i et éventuellement censurée à droite par z_{ij} .

 \hookrightarrow sur s_i , on observe $y_{ij} = min(t_{ij}, z_{ij})$ et $\delta_{ij} = \mathbb{1}(t_{ij} \le z_{ij})$

Notations

Population U (taille N) partitionnée en m domaines U_i (taille N_i) s échantillon de U de taille n

 $s_i = s \cap U_i$ échantillon de taille n_i du domaine U_i .

 t_{ij} valeur de T pour le jème individu du domaine U_i : uniquement observée sur s_i et éventuellement censurée à droite par z_{ij} .

 \hookrightarrow sur s_i , on observe $y_{ij} = min(t_{ij}, z_{ij})$ et $\delta_{ij} = \mathbb{I}(t_{ij} \leq z_{ij})$

Objectif : estimer la fdr F^i de T sur le domaine U_i

$$F^{i}(t) = \frac{1}{N_{i}} \sum_{j \in U_{i}} \mathbb{I}(t_{ij} \leq t)$$

- ► Information auxiliaire apportée par une covariable x continue connue sur tout *U*
- ▶ On suppose que le plan d'échantillonnage est non informatif
 → estimateurs basés sur un modèle
 - \hookrightarrow prédiction de $\mathbb{I}(t_{ij} \leq t)$ pour $j \in U_i \setminus s_i$

Estimateurs utilisant uniquement les données du domaine

► Approche directe :

Cas censuré : t_{ij} non connu complètement sur s_i \hookrightarrow on estime F^i par l'estimateur de Kaplan-Meier calculé avec les individus de s_i : $\widehat{F}^i_{\text{KM}}$

Estimateurs utilisant uniquement les données du domaine

► Approche directe :

Cas censuré : t_{ij} non connu complètement sur s_i \hookrightarrow on estime F^i par l'estimateur de Kaplan-Meier calculé avec les individus de s_i : $\widehat{F}^i_{\text{KM}}$

► Approche indirecte : estimateur basé sur un modèle

Estimateurs de la fdr en population finie :

Estimateurs utilisant uniquement les données du domaine

► Approche directe :

Cas censuré : t_{ij} non connu complètement sur s_i \hookrightarrow on estime F^i par l'estimateur de Kaplan-Meier calculé avec les individus de s_i : $\widehat{F}^i_{\text{KM}}$

► Approche indirecte : estimateur basé sur un modèle Estimateurs de la fdr en population finie :

 \hookrightarrow Casanova et Leconte (2015) appliqué au domaine U_i

$$F^{i}(t) = \frac{n_{i}}{N_{i}} \underbrace{\left(\frac{1}{n_{i}} \sum_{j \in s_{i}} \mathbb{I}(t_{ij} \leq t)\right)}_{\text{estimé par } \widehat{F}^{i}_{kM}} + \frac{1}{N_{i}} \sum_{j \in U_{i} \setminus s_{i}} \underbrace{\mathbb{I}(t_{ij} \leq t)}_{\text{à prédire}}$$

Modèle non paramétrique de superpopulation sur les domaines U_i :

$$\xi$$
: $t_{ij} = m_i(x_{ij}) + \varepsilon_{ij}$, $i = 1, \ldots, m, j = 1, \ldots, N_i$,

 $m_i(x_{ij})$ médiane conditionnelle de T sachant $X = x_{ij}$ erreurs ε_{ii} variables i.i.d. de fdr G^i

Modèle non paramétrique de superpopulation sur les domaines U_i :

$$\xi: t_{ij} = m_i(x_{ij}) + \varepsilon_{ij}, i = 1, \ldots, m, j = 1, \ldots, N_i,$$

 $m_i(x_{ij})$ médiane conditionnelle de T sachant $X = x_{ij}$ erreurs ε_{ij} variables i.i.d. de fdr G^i

On a
$$\mathbb{E}_{\xi} \left(\mathbb{I}(t_{ij} \leq t) \right) = G^{i}(t - m_{i}(x_{ij}))$$

- $\hookrightarrow m_i(x_{ij})$ estimée par la solution de $\widehat{F}_{SGKM}^i(t \mid x_{ij}) = 0,5$ (deux paramètres de lissage h_X^i et h_T^i)
- \hookrightarrow fdr des erreurs G^i estimée par Kaplan-Meier calculé sur les résidus $y_{ii} \hat{m}_i(x_{ii})$

$$\hookrightarrow \widehat{F}_{\scriptscriptstyle{\mathsf{M}}}^{i}(t) = \frac{n_{i}}{N_{i}}\widehat{F}_{\scriptscriptstyle{\mathsf{KM}}}^{i}\left(t\right) + \frac{1}{N_{i}}\sum_{j\in U_{i}\setminus s_{i}}\widehat{G}_{\scriptscriptstyle{\mathsf{KM}}}^{i}(t-\widehat{\underline{m_{i}}}(x_{ij}))$$

Estimateur empruntant de la force aux autres domaines

Estimateurs "petits domaines" de la fdr : approche (M)-quantiles

Modèle non paramétrique de superpopulation sur U:

$$\zeta$$
: $t_{ij} = m(q_i, x_{ij}) + \varepsilon_{ij}, i = 1, \ldots, m, j = 1, \ldots, N_i$

 q_i coefficient dans (0,1) caractérisant la position du domaine U_i , $m(q_i,x_{ij})$ quantile conditionnel d'ordre q_i de T sachant $X=x_{ij}$ ε_{ij} variables i.i.d. (à i fixé) de fdr $G^{\prime i}$

$$\hookrightarrow$$
 estimer $\mathbb{E}_{\zeta}(\mathbb{1}(t_{ij} \leq t)) = G'^{i}(t - m(q_{i}, x_{ij}))$

- 1. Estimation de q_i
 - Estimation des ordres-quantiles conditionnels des individus de s par $\hat{q}_{ij} = \hat{F}_{SGKM}(y_{ij} \mid x_{ij})$ à l'aide de tout l'échantillon (deux fenêtres h_X et h_T communes à tous les domaines)
 - Estimateur \hat{q}_i de l'ordre q_i du domaine U_i : ordre médian des \widehat{q}_{ii} des individus de s_i (par Kaplan-Meier)

$$\hookrightarrow$$
 estimer $\mathbb{E}_{\zeta}(\mathbb{I}(t_{ij} \leq t)) = G'^{i}(t - m(q_{i}, x_{ij}))$

- 1. Estimation de q_i
 - Estimation des ordres-quantiles conditionnels des individus de s par $\hat{q}_{ij} = \hat{F}_{\text{SGKM}}(y_{ij} \mid x_{ij})$ à l'aide de tout l'échantillon (deux fenêtres h_X et h_T communes à tous les domaines)
 - Estimateur \hat{q}_i de l'ordre q_i du domaine U_i : ordre médian des \widehat{q}_{ii} des individus de s_i (par Kaplan-Meier)
- 2. Estimation du quantile conditionnel $m(q_i, x_{ij})$: solution de $\widehat{F}_{\text{SGKM}}(t \mid x_{ii}) = \widehat{q}_i$

$$\hookrightarrow$$
 estimer $\mathbb{E}_{\zeta}(\mathbb{I}(t_{ij} \leq t)) = G'^{i}(t - m(q_{i}, x_{ij}))$

- 1. Estimation de q_i
 - Estimation des ordres-quantiles conditionnels des individus de s par $\hat{q}_{ij} = \hat{F}_{\text{SGKM}}(y_{ij} \mid x_{ij})$ à l'aide de tout l'échantillon (deux fenêtres h_X et h_T communes à tous les domaines)
 - Estimateur \hat{q}_i de l'ordre q_i du domaine U_i : ordre médian des \widehat{q}_{ij} des individus de s_i (par Kaplan-Meier)
- 2. Estimation du quantile conditionnel $m(q_i, x_{ij})$: solution de $\widehat{F}_{SGKM}(t \mid x_{ij}) = \widehat{q}_i$
- 3. Estimation de G^{i} par Kaplan-Meier sur les résidus $y_{ij} \hat{m}(\hat{q}_i, x_{ij})$ des individus de s_i

$$\hookrightarrow \widehat{F}_{\scriptscriptstyle Q}^i(t) = \frac{n_i}{N_i} \widehat{F}_{\scriptscriptstyle \mathsf{KM}}^i(t) + \frac{1}{N_i} \sum_{j \in U_i \setminus s_i} \widehat{G}_{\scriptscriptstyle \mathsf{KM}}^{\prime i}(t - \hat{m}(\hat{q}_i, x_{ij}))$$

Simulations basées sur un modèle

Description

Génération de populations partitionnées en 10 domaines (de tailles fixes comprises entre 50 et 150) suivant le modèle log-linéaire de régression :

$$In(t_{ij}) = 4 - 1,61 * x_{ij} + u_i + \varepsilon_{ij}$$

- $ightharpoonup x_{ij} \sim U(1,4)$
- ε_{ij} terme d'erreur : distribution de valeur extrême $(Var(\varepsilon)=1,645)
 ightarrow t_{ij} \sim \mathcal{E} ext{xp}$
- ► Effet aléatoire du domaine U_i : $u_i \sim \mathcal{N}(0, \sigma^2)$ $\rightarrow \rho = \frac{\sigma^2}{\sigma^2 + Var(\varepsilon)}$ (10, 25 et 50 %)
- ▶ Délai de censure : $c_{ij} \sim U(0,c)$ (10, 25 et 50 % de censure)
- lacktriangle Données observées : $y_{ij} = min(t_{ij}, c_{ij})$ et $\delta_{ij} = \mathbb{I}(t_{ij} < c_{ij})$

- ► Taux de sondage : 1/20 (s_i de tailles 3, 5, 4, 4, 6, 5, 5, 4, 6, 5) et 1/10 (s_i de tailles 7, 9, 8, 7, 12, 9, 9, 8, 12, 9)
- ▶ 1000 itérations
- Choix des paramètres de lissage de $\widehat{F}_{\mathrm{M}}^{i}$ (h_{X}^{i}, h_{T}^{i}) choisi pour chaque domaine de façon à minimiser le critère $\mathrm{ASE}(\widehat{F}_{\mathrm{M}}^{i}) = \frac{1}{5} \sum_{k=1}^{5} \left(\widehat{F}_{\mathrm{M}}^{i}(tt_{k}) F^{i}(tt_{k})\right)^{2}$ tt_{k} quantiles d'ordres 10%, 25%, 50%, 75% et 90% de la
 - tt_k quantiles d'ordres 10 %, 25 %, 50 %, 75 % et 90 % de la loi de T.
- Choix des paramètres de lissage de \hat{F}_{Q}^{i} $(h_{X}, h_{T}) \text{ tel que } \sum_{i=1}^{10} \mathsf{ASE}(\hat{F}_{Q}^{i}) \text{ minimum}$

Simulations basées sur un modèle

Résultats

Biais relatifs absolus moyennés (en %) sur les 10 domaines pour $\rho=25\%$.

			Tai	ıx de son	dage: 1/	20			
Ordre	au=10%			$\tau = 25\%$			au=50%		
quantile	KM	M	Q	KM	M	Q	KM	M	(
0.10	2.75	25.40	26.57	2.75	17.28	15.60	7.26	14.84	5.9
0.25	1.89	5.80	12.67	2.14	5.50	11.89	5.50	11.15	9.1
0.50	1.11	5.19	12.27	1.54	6.24	9.87	12.39	16.30	10.3
0.75	0.77	4.96	2.45	4.91	8.99	9.28	29.12	28.96	29.1
0.90	1.70	3.83	2.98	9.60	9.27	9.55	9.04	9.04	9.0
			Tai	ıx de son	dage: 1/	10			
Ordre	au=10%			au=25%			au=50%		
quantile	KM	M	Q	KM	M	Q	KM	M	(
0.10	2.31	34.88	26.10	2.27	26.98	17.04	2.67	17.33	4.2
0.25	1.44	1.56	17.55	1.36	1.64	15.23	1.75	2.27	15.7
0.50	0.99	2.12	16.73	0.98	1.64	13.85	3.13	6.00	1.6
0.75	0.51	2.37	1.25	1.92	5.42	6.49	30.58	30.35	30.5
0.90	1.25	2.77	2.37	9.91	9.35	9.87	9.70	9.70	9.7

Racines carrées des erreurs quadratiques moyennes relatives (en %) moyennées sur les 10 domaines pour $\rho=25\%$.

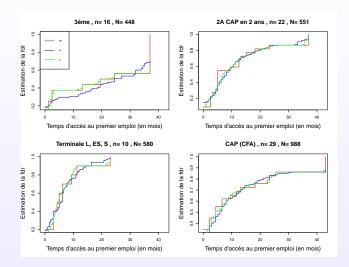
			Ta	ux de sond	age · 1/20)			
Ordre		$\tau = 10\%$	10		$\tau = 25\%$		au=50%		
quantile	KM	M	Q	KM	M	Q	KM	M	Q
0.10	129.64	101.45	75.21	129.91	99.95	70.41	133.13	110.16	72.47
0.25	73.13	53.97	40.04	73.31	55.93	40.82	75.83	61.20	45.83
0.50	42.80	33.52	28.48	44.08	35.46	29.72	53.25	45.12	39.12
0.75	25.67	20.86	22.05	28.40	23.88	24.42	32.81	32.65	32.81
0.90	15.24	12.02	13.55	12.88	12.40	12.82	12.18	12.18	12.18
			Ta	ux de sond	age : 1/10)			
Ordre	au=10%				$\tau = 25\%$		au=50%		
quantile	KM	M	Q	KM	M	Q	KM	M	G
0.10	90.70	65.95	61.33	90.84	60.93	57.38	91.60	58.40	55.55
0.25	52.23	29.10	34.18	52.39	29.47	33.96	54.01	33.70	36.90
0.50	30.05	22.35	25.02	30.83	23.58	24.53	37.12	29.87	27.7
0.75	17.88	15.37	15.99	21.06	17.57	18.72	34.45	34.22	34.45
0.90	11.52	9.49	10.50	13.25	12.42	13.20	12.90	12.90	12.90

Exemple d'application

- ▶ Données extraites de l'enquête "Génération 2010" du Centre d'Etudes et de REcherches sur les Qualifications (Céreq)
- Sous-population : jeunes filles diplômées sortant du secondaire en Occitanie en 2010 (N = 10135)
- ► Enquête téléphonique rétrospective : jeunes filles interrogées 3 ans après la fin de leurs études

- ► Domaines : niveaux × types de formation
 - \hookrightarrow 34 domaines de tailles variant de 7 à 1480
 - \hookrightarrow tailles des échantillons s_i variant de 1 à 37
- ► Variable auxiliaire : taux de chômage de la zone d'emploi de l'établissement de fin d'études
- liaison significative avec T (p = 0,014)
 - \hookrightarrow 6,6 % de chance de plus de trouver un emploi si le taux de chômage local est plus faible de 1 %

Courbes de survie pour 4 domaines (niveau × formation)



Perspectives

- Diminution du biais à l'aide d'une approche "assistée par un modèle",
- ► Techniques de type bootstrap pour estimer le biais et la variance de l'erreur de prédiction et un IC de la fdr,
- ► Trouver d'autres exemples d'application.