

Procédures rapides pour la sélection d'échantillons à probabilités inégales à partir d'un flux

Yves Tillé Université de Neuchâtel

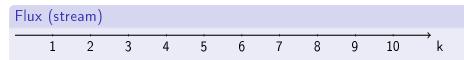
10éme Colloque francophone sur les sondages

1 / 18

Table of contents

- Introduction et notations
- 2 Méthodes à taux fixe
- Méthodes de taille fixe
- Généralisation
- Conclusions

Notation



- Le flux est tellement grand qu'on veut décider directement de la sélection d'une nouvelle unité quand elle apparaît.
- Les unités non-sélectionnées sont effacées.

Notations

- Suite de populations $U_1, U_2, \ldots, U_n, \ldots, U_i, \ldots, U_N$.
- Suite d'échantillons $S_1, S_2, \ldots, S_n, \ldots, S_i, \ldots, S_N$.
- $S_i \subset U_i$.
- Variable auxiliaire $x_k > 0, k \in U_N$.

Échantillons dans un flux

4 / 18

Méthodes à taux fixe

- Probabilités d'inclusion $\pi_k = \min(\tau x_k, 1)$.
- τ est fixé.
- L'espérance de la taille de l'échantillon vaut $\sum_{k \in U_N} \min(au x_k, 1)$.

5 / 18

Méthodes à taux fixe : solutions

- Plan de Poisson.

 Distribution de n_S est Poisson-Binomiale

 (Hodges Jr. and Le Cam, 1960; Stein, 1990; Chen and Liu, 1997)
- Tirage systématique à probabilités inégales
 Taille d'échantillon presque fixe (Madow, 1949).
- Méthode du pivot ordonnée (Deville and Tillé, 1998; Grafström et al., 2012; Chauvet, 2012).
- Méthode de Fuller méthode du pivot avec une première unité fantôme $\pi_0 \sim \textit{Unif}(0,1)$ (Fuller, 1970; Tillé, 2018).
- Échantillonnage équilibré. Méthode du cube rapide (phase de vol uniquement). On n'applique la phase de vol que sur les p+1 premières unités avec des valeurs non-entières (Deville and Tillé, 2004; Chauvet and Tillé, 2006).

Méthodes de taille fixe

• Probabilités d'inclusion $\pi_k(U_i, n) = \min(\tau_i x_k, 1)$ tel que

$$\sum_{k\in U_i}\min(\tau_i|x_k,1)=n.$$

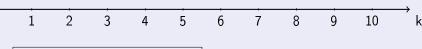
Méthodes de taille fixe Exemple du calcul des $\pi_k(U_i, n)$ N = 12, n = 5

	0.70	2.6	0.40	0.40	0.21	0.72	0.15	0.42	U E 2	0.05	0.24	2.70
_X	0.70	2.0	0.40	0.40	0.21	0.73	0.15	0.43	0.55	0.05	0.54	3.70
U_5	1	1	1	1	1							
U_6	1	1	0.88	0.73	0.39	1						
U_7	1	1	0.77	0.64	0.34	1	0.24					
U_8	0.91	1	0.62	0.51	0.28	0.94	0.19	0.56				
U_9	0.77	1	0.53	0.44	0.24	0.80	0.16	0.48	0.58			
U_{10}	0.76	1	0.52	0.43	0.23	0.79	0.16	0.47	0.57	0.05		
U_{11}	0.70	1	0.48	0.40	0.21	0.72	0.15	0.43	0.52	0.05	0.34	
U_{12}	0.53	1	0.36	0.30	0.16	0.54	0.11	0.32	0.39	0.04	0.25	1

Méthode de Chao

Méthode de Chao

- La méthode de Chao est une méthode à réservoir (Chao, 1982;
 Sugden et al., 1996).
- Au début le réservoir contient les n=5 premières unités.



1 2 3 4 5

 Chaque fois qu'une nouvelle unité apparaît avec une probabilité, elle peut entrer dans le réservoir et une unité du réservoir est enlevée.

Méthode de Chao

Méthode de Chao

- À l'étape i = n + 1, ..., N, l'unité i est incluse dans le réservoir avec une probabilité $\pi_i(U_i, n)$.
- Si l'unité *i* est sélectionnée, l'une des unités du réservoir est enlevée avec la probabilité :

$$a_{ki} = \frac{1}{\pi_k(U_i, n)} \left[1 - \frac{\pi_k(U_i, n)}{\pi_k(U_{i-1}, n)} \right], k = 1, \dots, i-1.$$

• Il est en effet possible de prouver que

$$\sum_{k \in S_{i-1}} a_{ki} = 1.$$

• Cohen et al. (2009) ont montré que les unités non sélectionnées peuvent être définitivement oubliées.

- 《ロト 4個 × 4 恵 × 4 恵 × - 恵 - 夕 º

Généralisation

Quasi-échantillons

- Phase de vol rapide (ffph pour fast flight phase).
- Sélection de quasi-échantillon :

$$\operatorname{ffph}(\pi_1,\ldots,\pi_k,\ldots,\pi_N)=\boldsymbol{\psi}=(\psi_1,\ldots,\psi_k,\ldots,\psi_N)^{\top}$$

de telle sorte que $0 \le \psi_k \le 1, k \in U_N$, $\mathrm{E}(\psi_k) = \pi_k$, card $\{0 < \psi_k < 1\} \le p$ et

$$\sum_{k \in U_N} \frac{\psi_k \mathbf{z}_k}{\pi_k} = \sum_{k \in U_N} \mathbf{z}_k.$$

où $\mathbf{z}_k \in \mathbb{R}^p$.

Généralisation

Quasi-échantillons

• Sélection en deux phases avec des probabilités respectives $\pi_k^1 > \pi_k^2$ équilibré sur \mathbf{z}_k .

Proposition

Si le quasi-échantillon ψ_1 tiré avec les probabilités π_k^1 est équilibré sur z_k et qu'il existe un vecteur $\boldsymbol{\theta} \in \mathbb{R}^p$ tel que $\boldsymbol{\theta}^\top z_k = v_k$, alors les probabilités d'inclusion π_k^2 et donc les probabilités de tirage ξ_k peuvent être calculées à partir de v_k sans connaître les unités telles que $\psi_k^1 = 0$, en résolvant dans τ_2 :

$$\sum_{k\in U_N} \min(1, \tau_2 \mathsf{v}_k) \frac{\psi_k^1}{\pi_k^1} \pi_k^1 = m.$$

→□▶→□▶→□▶→□ ● りゅぐ

Généralisation

Plusieurs généralisations

- Méthode du réservoir équilibrée.
- Méthode de Chao par blocs (on ne considère plus une nouvelle unités mais un bloc de H nouvelles unités).
- Méthode du réservoir équilibrée par bloc.
- Méthode en deux passages.

Méthode en deux passages

Méthode en deux passages

- D'abord on sélectionne un grand échantillon équilibré sur $\mathbf{z}_k = (\pi_k^1, \mathbf{x}_k)^{\top}$.
- $\bullet \ \pi_k^1 = \min \left(n x_k \frac{\sum_{k \in U_k} x_k}{\sum_{k \in U_{k+1}} x_k}, 1 \right).$
- Ensuite un sous-échantillon.
- $\pi_k^2 = \pi_k(U_N, n)$.

Yves Tillé

Méthode en deux passages

Méthode en deux passages

• Exemple avec des probabilités d'inclusion égales $x_k = 1$, n = 5.

k	1	2	3	4	5	6	7	8	9	10	11	12
x_k	1	1	1	1	1	1	1	1	1	1	1	1
		1										
π_k^2	<u>5</u> 12	<u>5</u> 12	<u>5</u> 12	<u>5</u> 12	<u>5</u> 12	<u>6</u> 12	7 12	<u>8</u>	9 12	$\frac{10}{12}$	$\frac{11}{12}$	1

• La taille du premier échantillon vaut approximativement $n+n\ln\frac{N}{n}$

Conclusions

- Un résultat général permet de multiples implémentations.
- La méthode du réservoir est généralisable à des blocs.
- Les méthodes sont généralisables aux plans équilibrés.
- On peut concevoir des stratégies complexes en plusieurs phases.

Bibliography I

Yves Tillé

- Chao, M.-T. (1982). A general purpose unequal probability sampling plan. *Biometrika*, 69:653–656.
- Chauvet, G. (2012). On a characterization of ordered pivotal sampling. *Bernoulli*, 18(4):1099-1471.
- Chauvet, G. and Tillé, Y. (2006). A fast algorithm of balanced sampling. *Journal of Computational Statistics*, 21:9–31.
- Chen, X.-H. and Liu, J. S. (1997). Statistical applications of the Poisson-binomial and conditional Bernoulli distributions. *Statistica Sinica*, 7:875–892.
- Cohen, E., Duffield, N., Kaplan, H., Lund, C., and Thorup, M. (2009). Stream sampling for variance-optimal estimation of subset sums. In *Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1255–1264. Society for Industrial and Applied Mathematics.
- Deville, J.-C. and Tillé, Y. (1998). Unequal probability sampling without replacement through a splitting method. *Biometrika*, 85:89–101.
- Deville, J.-C. and Tillé, Y. (2004). Efficient balanced sampling: The cube method. *Biometrika*, 91:893–912.
- Fuller, W. A. (1970). Sampling with random stratum boundaries. *Journal of the Royal Statistical Society*, B32:209–226.
- Grafström, A., Lundström, N. L. P., and Schelin, L. (2012). Spatially balanced sampling through the pivotal method. *Biometrics*, 68(2):514–520.

(ロト(母)(き)(き) き 少 Q (で Échantillons dans un flux Lyon 2018 17/18

Bibliography II

- Hodges Jr., J. L. and Le Cam, L. (1960). The Poisson approximation to the Poisson binomial distribution. *Annals of Mathematical Statistics*, 31:737-740.
- Madow, W. G. (1949). On the theory of systematic sampling, II. Annals of Mathematical Statistics, 20:333–354.
- Stein, C. (1990). Application of Newton's identities to a generalized birthday problem and to the Poisson-Binomial distribution. Technical Report TC 354, Department of Statistics, Stanford University.
- Sugden, R. A., Smith, T. M. F., and Brown, R. P. (1996). Chao's list sequential scheme for unequal probability sampling. *Journal of Applied Statistics*, 23:413-421.
- Tillé, Y. (2018). Fast implementation of Fuller's unequal probability sampling method. Technical report, University of Neuchâtel.