La convergence d'estimateurs et d'estimateurs de variance pour l'échantillonnage à deux degrés

Audrey-Anne Vallée Université de Neuchâtel

et

Guillaume Chauvet
Ensai (Irmar)

Colloque francophone sur les sondages 26 Octobre 2018 Lyon

Contexte

Échantillonnage à deux degrés Estimateurs pour les plans à deux degrés

Estimateurs et hypothèses

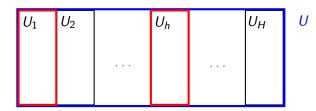
Estimateurs Hypothèses

Résultats principaux

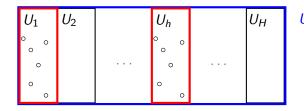
Convergence des estimateurs du total et de la variance Convergence d'un estimateur de variance simplifié Cas des plans de sondage à grande entropie

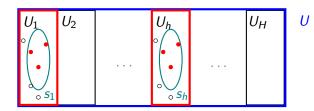
Étude par simulations

U_1	U_2	U_h	U_H	ι



2/16





Estimateurs pour les plans à deux degrés

Pour estimer un total:

- Estimateur du total Horvitz-Thompson;
- Estimateurs de variance habituels (Horvitz-Thompson, Yates-Grundy).

Certaines propriétés des estimateurs sont nécessaires:

- Convergence de l'estimateur;
- Convergence de l'estimateur de variance;
- Validité d'un théorème central limite.

Objectif: Établir ces propriétés pour les plans à deux degrés, précisément pour un estimateur de variance simplifié.

Contexte

Échantillonnage à deux degrés Estimateurs pour les plans à deux degrés

Estimateurs et hypothèses

Estimateurs Hypothèses

Résultats principaux

Convergence des estimateurs du total et de la variance Convergence d'un estimateur de variance simplifié Cas des plans de sondage à grande entropie

Étude par simulations

Estimateurs

- ▶ Population *U* de *N* Unités Secondaires d'Échantillonnage (USEs),
- ▶ Partitionnée en une population *U*_I de *N*_I Unités Primaires d'Échantillonnage (UPEs).
- Premier degré:
 - Échantillon S_I de n_I UPEs est sélectionné dans U_I .
 - $ightharpoonup \pi_{li}$ et π_{lij} : probabilités d'inclusion d'ordre un et deux.
 - Définissons $\Delta_{ij} = \pi_{Iij} \pi_{Ii}\pi_{Ij}$.
- ▶ Deuxième degré: échantillon S_i de n_i USEs est sélectionné dans chaque UPE $u_i \in S_I$.

Estimateurs

► Total de la variable *y*:

$$Y = \sum_{k \in U} y_k = \sum_{u_i \in U_l} Y_i,$$

où Y_i est le total dans l'UPE u_i .

L'estimateur Horvitz-Thompson de Y:

$$\widehat{Y}_{\pi} = \sum_{u_i \in S_I} \frac{\widehat{Y}_i}{\pi_{Ii}},$$

où \widehat{Y}_i estime le total Y_i .

Estimateurs

La variance de \widehat{Y}_{π} est

$$V(\widehat{Y}_{\pi}) = \underbrace{\sum_{u_i, u_j \in U_l} \Delta_{ij} \frac{Y_i}{\pi_{li}} \frac{Y_j}{\pi_{lj}}}_{V_1(\widehat{Y}_{\pi})} + \underbrace{\sum_{u_i \in U_l} \left(\frac{1 - \pi_{li}}{\pi_{li}}\right) V_i}_{V_2(\widehat{Y}_{\pi})} + \underbrace{\sum_{u_i \in U_l} V_i}_{V_3(\widehat{Y}_{\pi})}$$

où $V_i = V(\widehat{Y}_i)$ est la variance de \widehat{Y}_i dans l'UPE u_i .

L'estimateur Horvitz-Thompson de la variance est

$$\widehat{\mathbf{V}}_{HT}(\widehat{Y}_{\pi}) = \underbrace{\sum_{u_{i}, u_{j} \in S_{I}} \frac{\Delta_{ij}}{\pi_{Iij}} \frac{\widehat{Y}_{i}}{\pi_{Ii}} \frac{\widehat{Y}_{j}}{\pi_{Ij}}}_{\widehat{\mathbf{V}}_{HT, A}(\widehat{Y}_{\pi})} + \underbrace{\sum_{u_{i} \in S_{I}} \frac{\widehat{V}_{HT, i}}{\pi_{Ii}}}_{\widehat{\mathbf{V}}_{HT, B}(\widehat{Y}_{\pi})},$$

où $\hat{V}_{HT,i}$ est un estimateur de V_i .

Hypothèses

Variable *y*

▶ Moment d'ordre quatre fini $\frac{1}{N} \sum_{k \in U} y_k^4 \leq \infty$.

Premier degré du plan de sondage

- Fraction de sondage plus petite que 1,
- ▶ Probabilités d'inclusion d'ordre de grandeur de n_I/N_I ,
- Bornes pour les probabilités d'inclusion d'ordre deux et trois.

Deuxième degré du plan de sondage

- ightharpoonup Tailles N_i et n_i comparables,
- Probabilités d'inclusion d'ordre de grandeur de n_i/N_i ,
- ▶ Bornes pour les probabilités d'inclusion d'ordre deux et trois.

Contexte

Échantillonnage à deux degrés Estimateurs pour les plans à deux degrés

Estimateurs et hypothèses

Estimateurs Hypothèses

Résultats principaux

Convergence des estimateurs du total et de la variance Convergence d'un estimateur de variance simplifié Cas des plans de sondage à grande entropie

Étude par simulations

Convergence des estimateurs du total et de la variance

- ▶ Convergence de \hat{Y}_{π} vers le total Y.
- ► Convergence de $\hat{V}_{HT,A}(\hat{Y}_{\pi})$ vers $V_1(\hat{Y}_{\pi}) + V_2(\hat{Y}_{\pi})$.
- ► Convergence de $\hat{V}_{HT,B}(\hat{Y}_{\pi})$ vers $V_3(\hat{Y}_{\pi})$.
- \Rightarrow $\hat{V}_{HT}(\hat{Y}_{\pi}) = \hat{V}_{HT,A}(\hat{Y}_{\pi}) + \hat{V}_{HT,B}(\hat{Y}_{\pi})$ est un estimateur convergent de $V(\hat{Y}_{\pi})$.

Convergence d'un estimateur de variance simplifié

► Convergence de $\hat{V}_{HT,A}(\hat{Y}_{\pi})$ vers $V(\hat{Y}_{\pi})$ si

$$\frac{V_3(\hat{Y}_\pi)}{V_1(\hat{Y}_\pi)+V_2(\hat{Y}_\pi)}\to 0.$$

(... si la fraction de sondage au premier degré $n_I/N_I \rightarrow 0$.)

Échantillonnage réjectif

- Échantillonnage réjectif au premier degré (Hájek, 1964);
- Approximation du premier terme de l'estimateur de variance:

$$\hat{V}_{HAJ,A}(\hat{Y}_{r\pi}) = \sum_{u_i \in \mathcal{S}_{rl}} (1 - \pi_{li}) \left(\frac{\hat{Y}_i}{\pi_{li}} - \hat{R}_{\pi} \right)^2,$$

où \hat{R}_{π} est une fonction de π_{Ii} et \hat{Y}_{i} .

- ► Convergence de $\hat{V}_{HAIA}(\hat{Y}_{r\pi})$ vers $V_1(\hat{Y}_{\pi}) + V_2(\hat{Y}_{\pi})$.
- Version simplifiée.

$$\blacktriangleright \ \frac{\hat{Y}_{r\pi} - Y}{\sqrt{V(\hat{Y}_{r\pi})}} \longrightarrow_{\mathcal{L}} \mathcal{N}(0,1).$$

Contexte

Échantillonnage à deux degrés Estimateurs pour les plans à deux degrés

Estimateurs et hypothèses

Estimateurs Hypothèses

Résultats principaux

Convergence des estimateurs du total et de la variance Convergence d'un estimateur de variance simplifié Cas des plans de sondage à grande entropie

Étude par simulations

Simulations

- Population de $N_i = 2000$ UPEs:
- Nombre moyen de 40 USEs par UPEs, coéfficient de variation 0.03:
- où $\lambda = 20$. $\sigma = 2$. ρ_h t.q. le coefficient de corrélation intra-classe est 0.3, $\varepsilon_k \sim N(0,1), \ \nu_i \sim N(0,1) \ \text{dans I'UPE} \ u_i;$
- Premier degré: $n_l = 20, 40, 100, 200$ UPEs; échantillonnage réjectif;
- Deuxième degré: $n_i = 5$ USEs; échantillonnage aléatoire simple sans remise;
- $R = 1000 \text{ répétitions: } \widehat{Y}_{\pi}, \widehat{V}_{HAJ,A}(\widehat{Y}_{\pi}) \text{ et } \widehat{V}_{HAJ}(\widehat{Y}_{\pi});$
- ▶ Biais relatif Monte-Carlo BR_{MC}(\hat{V}); Stabilité relative Monte-Carlo SR_{MC}(\hat{V}); Probabilité de couverture de l'intervalle de confiance normal 95% (IC_{MC}).

Simulations et remarques

Table: Biais relatif, stabilité relative, taux de couverture de $\widehat{V}_{HALA}(\widehat{Y}_{\pi})$ et $\widehat{V}_{HAI}(\widehat{Y}_{\pi}).$

	BR_{MC}		SR_{MC}		IC_{MC}	
n_I	$\widehat{V}_{HAJ,A}$	\widehat{V}_{HAJ}	$\widehat{V}_{HAJ,A}$	\widehat{V}_{HAJ}	$\widehat{V}_{HAJ,A}$	\widehat{V}_{HAJ}
20	-0.72	-0.43	32.89	32.88	0.94	0.94
40	-0.77	-0.19	22.58	22.56	0.94	0.94
100	-1.63	-0.14	14.09	14.00	0.95	0.95
200	-3.26	-0.16	9.80	9.25	0.95	0.95

- ► Scénarios différents: variation de N_i, ICC et n_i.
- Autres plans de sondage à grande entropie.
- Autres paramètres et applications.

Référence

Hájek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite population. *Annals of Mathematical Statistics*, **35**, 1491–1523.