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Aims

We present a parametric approach to estimate `wage discrimination' at

di�erent quantiles.

The goal is to reduce the variance of the estimates compared to the

existing methods.

We illustrate this approach using the generalized beta of the second

kind distribution (hereafter, GB2).
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Framework

Consider a �nite population with the labels U = {1, 2, . . . ,N}.
From this population, we randomly select a sample S of size n,
without replacement.

The sample is selected through a sampling design

p(s) = Pr(S = s), ∀s ⊆ U.

To each unit k ∈ S , a survey weight wk is associated.

These weights can be equal to the inverse of the inclusion probabilities

or can be more complicated weights, like calibration weights.

Let y be the variable of interest (the wage).
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Superpopulation framework

Assume that U = UM ∪ UF , UM ∩ UF = ∅ is drawn from a

superpopulation.

The superpopulation is also divided in two subsuperpopulations from

where the subsets Ug , g = {M,F} are drawn, respectively.

The wage is a random variable Yg and Xg is a set of covariates.

In each subset Ug ,

Yk,g | Xg = xk,g ∼ D(γk,g , δg ), k ∈ Ug .

We assume that D(γk,g , δg ), k ∈ Ug is a continuous distribution and

that γk,g = h(x>k,gβg ), where h is a known continuous function.

The sample S = SM ∪ SF , SM ∩ SF = ∅,Sg ⊆ Ug , g = {M,F}.
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The counterfactual wage distribution

The CDF of the counterfactual wage distribution is de�ned as

FC (y) =

∫
XM

FYF |XF (y | x)dFXM (x),

where XM is the support of XM and XF the support of XF .

It is assumed that XM ⊆ XF .
It is interpreted as the distribution function of wages that would be

obtained for women if their characteristics were same as those of men.

F F (y) =

∫
XF

FYF |XF (y | x)dFXF (x),

FM(y) =

∫
XM

FYM |XM (y | x)dFXM (x).
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The counterfactual wage distribution

The CDF of the counterfactual wage distribution is de�ned as

FC (y) =

∫
XM

FYF |XF (y | x)dFXM (x)

=

∫
XF

FYF |XF (y | x)
dFXM (x)

dFXF (x)
dFXF (x)

=

∫
XF

FYF |XF (y | x)ψ(x)dFXF (x),

where XM is the support of XM and XF the support of XF . It is assumed

that XM = XF .

F F (y) =

∫
XF

FYF |XF (y | x)dFXF (x),
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The weighted DiNardo, Fortin and Lemieux method

DiNardo et al. (1996) write the reweighting factor ψ(xk) =
dFXM (xk)

dFXF (xk)
as

ψ(xk) = ψk =
P(Genderk = ‘man′ | xk)/P(Genderk = ‘man′)

P(Genderk = ‘woman′ | xk)/P(Genderk = ‘woman′)

The idea is to reweigh the characteristics of women so that they

match the characteristics of men, such that

X̂C = X̂M ,

where X̂C =
∑

k∈SF ψ̂kwkxk/
∑

k∈SF ψ̂kwk and

X̂M =
∑

k∈SM wkxk/
∑

k∈SM wk .
The factor ψ(xk) can be estimated by using a probit or a logistic

regression model (DiNardo et al., 1996) or by calibration (Anastasiade

and Tillé, 2017).
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Aim

If ∆(α) is the wage di�erence between men and women at a given quantile

α, we can write

∆(α) = QM
(α) − QF

(α) = (QM
(α) − QC

(α)) + (QC
(α) − QF

(α)),

where QM
(α),Q

C
(α) and QF

(α) are the quantile of order α of men,

counterfactual and women wage distributions, respectively.

∆̂(α) = Q̂M
(α) − Q̂F

(α) = (Q̂M
(α) − Q̂C

(α)) + (Q̂C
(α) − Q̂F

(α)).
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Estimation of the CDF in �nite populations

The empirical CDF at the U level is de�ned as

Femp(y) =

∑
k∈U I (yk ≤ y)

N
.

The classical design-based estimator is

F̂emp(y) =

∑
k∈S wk I (yk ≤ y)∑

k∈S wk
.

The quantile of order α of y is estimated by

Q̂α,emp(y) = inf{F̂emp(y) ≥ α}.
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Parametric approach

We assume that U is selected from a superpopulation and Y is a

random variable with the CDF F (.).

We include auxiliary information X in the estimation of F (.) by

assuming that Yk | Xk ∼ D(γk = h(x>k β), δk), k ∈ U.

We write

FU(y) =
∑
k∈U

λkFD(γk,g ,δ)(y | xk,g ) =
1

N

∑
k∈U

FD(γk,g ,δ)(y | xk,g ),

where λk = 1/N, FD(γk ,δ)(. | xk) is the CDF of the distribution

D(γk = h(x>k β), δk), k ∈ U, and h(.) is a continuous function.
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Method 1 for quantile estimation

We propose to estimate the quantile of order α of Y as

Q̂(α) = inf{y | F̂U(y) ≥ α},

where F̂U(y) is the estimator of FU(y) in the point y given by

F̂U(y) =
∑
k∈S

wk F̂D(γ̂k ,δ̂)
(yk | xk)/

∑
k∈S

wk .
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Method 2 for quantile estimation

In case the inverse function of F̂U(y) cannot be computed, we propose to

use a Monte Carlo method based on parametric bootstrap.
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Method 2 for quantile estimation

Yi ,k | xk ∼ D(h(x>k β̂), δ̂)



w1 w2 w3 . . . wn

y11 y12 y13 . . . y1n

y21 y22 y23 . . . y2n

y31 y32 y33 . . . y3n

. . . . . . . . . . . .
ym1 ym2 ym3 . . . ymn


−→



Q̂0.25
1 Q̂0.5

1 Q̂0.75
1 Q̂0.95

1

Q̂0.25
2 Q̂0.5

2 Q̂0.75
2 Q̂0.95

2

Q̂0.25
3 Q̂0.5

3 Q̂0.75
3 Q̂0.95

3

. . . . . . . . . . . .

Q̂0.25
m Q̂0.5

4 Q̂0.75
m Q̂0.95

4

Q̂0.25 Q̂0.5 Q̂0.75 Q̂0.95


Remark: Methods 1 and 2 are applied to estimate respectively the

α-quantiles in each group g ∈ {M,F}.
26th October 2018 13 / 31



Method 1 for the counterfactual wage distribution

We rede�ne the counterfactual CDF at the UF level as

FC
UF

(y) =
1

NC

∑
k∈UF

ψkF
(YF |XF )(yk | xk,F ),

where NC =
∑

k∈UF
ψk .

First, we estimate it by

F̂C
UF

(y) =

∑
k∈SF ψ̂kwk F̂

(YF |XF )(yk | xk,F )∑
k∈SF ψ̂kwk

,

where F̂ (YF |XF )(yk | xk,F ) = F
D(h(x>k,F β̂F ),δ̂F )

(yk | xk,F ), and ψ̂k is

estimated by calibration (Anastasiade and Tillé, 2017).

Next, Q̂C
(α) = inf{y | F̂C

UF
(y) ≥ α}.
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Method 2 for the counterfactual wage distribution

Yi ,k | xk,F ∼ D(h(x>k,F β̂F ), δ̂F )



ψ̂1w1 ψ̂2w2 . . . ψ̂nFwnF

y11 y12 . . . y1nF

y21 y22 . . . y2nF

y31 y32 . . . y3nF

. . . . . . . . . . . .
ym1 ym2 . . . ymnF


−→



Q̂0.25
1 Q̂0.5

1 Q̂0.75
1 Q̂0.95

1

Q̂0.25
2 Q̂0.5

2 Q̂0.75
2 Q̂0.95

2

Q̂0.25
3 Q̂0.5

3 Q̂0.75
3 Q̂0.95

3

. . . . . . . . . . . .

Q̂0.25
m Q̂0.5

4 Q̂0.75
m Q̂0.95

4

Q̂
C

0.25 Q̂
C

0.5 Q̂
C

0.75 Q̂
C

0.95


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The two methods

The proposed methods aim to reduce the variance of the estimated

quantiles compared to the estimation given by the empirical CDF.

The methods are correct if the underlined conditional distribution is

correct.

Departures from this assumption can be managed by using a GB2

distribution.
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The GB2 distribution

The GB2 distribution is characterized by four parameters, namely a, b, p
and q. The probability density function of a GB2(a, b, p, q) distribution is

given by

f (y ; a, b, p, q) =
a
(y
b

)ap−1
bB(p, q)[1 +

(y
b

)a
]p+q

,

where a, p, q are the shape parameters and b is a scale parameter.

26th October 2018 17 / 31



0 10 20 30 40 50 60 70

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Example of GB2 distribution

a=8
b=10
p=0.5
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The GB2 distribution

We borrow from McDonald and Butler (1990) the idea of changing

the scale parameter, by expressing it as a function of the observed

characteristics.

In each group, g ∈ {M,F}, we assume that the conditional wage of

k ∈ Ug , Yk | Xk,g = xk,g ∼ GB2(ag , exp(xkβg ), pg , qg ).

Thus, for each k ∈ Ug , the GB2 density becomes

f [yk ; ag , exp(x>k βg ), pg , qg ] =

a
[ yk
exp(x>k βg )

]agpg−1
exp(x>k βg )B(pg , qg )

{
1 +

[ yk
exp(x>k βg )

]a}pg+qg
.
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The GB2 distribution
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The GB2 regression

We assume that

log(Yk,g ) = X
>
k,gβg + log(εk,g ),

where Yk,g is the wage of individual k ∈ Ug , εk,g ∼ GB2(ag , 1, pg , qg ).
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The GB2 distribution

We estimate the parameters of the GB2 distribution using

pseudo-maximum likelihood.

We developed an algorithm to estimate the parameters of the GB2

distribution when xk is introduced in the scale parameter.

We estimate the standard errors of the estimated parameters using the

sandwich estimator and a parametric bootstrap approach.
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Example - Swiss Survey on Earnings Structure, 2012

- sample of 5643 employees (1880 women, 3763 men) working in the economic
activity `Manufacture of computer, electronic and optical products');
- models with the covariates: age, education level (9 categories), professional
position (5 categories).

Figure: QQplot for a log-normal model Figure: QQplot for a GB2 model
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Monte-Carlo simulation

NF = NM = 50, 000, nF = nM = 10, 000,

Xk,F ∼ N(3, 1),Xk,M ∼ N(2.5, 1), independent,

Yk,F ∼ LN(1.15 + 2.5Xk,F , 1), k ∈ UF

1000 independent srswor samples of size nF from UF ,

At the population level: ψk = fN(2.5,1)(Xk,F )/fN(3,1)(Xk,F ), k ∈ UF .
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ψ e�ect
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Monte-Carlo variance
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Monte-Carlo bias
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Monte-Carlo RMSE
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Monte-Carlo CV
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Conclusions

Wages usually have heavy-tailed distributions, which makes it di�cult

to �t a distribution for them.

We propose two parametric methods to estimate the quantiles (and

di�erences between the quantiles).

The introduction of the covariates aims to reduce the variance of the

estimates.
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