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Aims

@ We present a parametric approach to estimate ‘wage discrimination’ at
different quantiles.

@ The goal is to reduce the variance of the estimates compared to the
existing methods.

@ We illustrate this approach using the generalized beta of the second
kind distribution (hereafter, GB2).
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Framework

o Consider a finite population with the labels U = {1,2,..., N}.

@ From this population, we randomly select a sample S of size n,
without replacement.

@ The sample is selected through a sampling design
p(s) =Pr(S=5),Vs C U.
@ To each unit k € S, a survey weight wy is associated.

@ These weights can be equal to the inverse of the inclusion probabilities
or can be more complicated weights, like calibration weights.

o Let y be the variable of interest (the wage).
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|
Superpopulation framework

@ Assume that U = Uy U Ur, Upy N Ug = 0 is drawn from a
superpopulation.

@ The superpopulation is also divided in two subsuperpopulations from
where the subsets Uz, g = {M, F} are drawn, respectively.

@ The wage is a random variable Y and X, is a set of covariates.

@ In each subset U,
Yig | Xg = Xkg ~ D(Vkg,0¢), k € Ug.

o We assume that D(vx g, 0g), k € Ug is a continuous distribution and
that vk g = h(x;—gﬁg), where h is a known continuous function.

® The sample S = Sy USF, SN SF=0,5 C Ug, g = {M, F}.
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.
The counterfactual wage distribution

The CDF of the counterfactual wage distribution is defined as
Feb) = [ FYRe(y [ )dr®e),
Xm

where X\ is the support of Xy, and X'~ the support of Xr.
It is assumed that Xy C Xr.

It is interpreted as the distribution function of wages that would be
obtained for women if their characteristics were same as those of men.

FF(y) = /X FYFXE(y | x)dF¥F (),

FM(y) = /X FYuXi (y | x)dFXM (x).
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.
The counterfactual wage distribution

The CDF of the counterfactual wage distribution is defined as
FCy) = / FYFIXE(y | x)dF*M(x)
Xm

Xwm X

- / FYEXE () | )i (x)dF¥* (x),
Xr

where X is the support of X, and X7 the support of Xg. It is assumed
that Xy = Xr.

FF(y) = /X FYPXE (y | x)dF¥ (x),
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The weighted DiNardo, Fortin and Lemieux method

. . C dFXM(Xk)
e DiNardo et al. (1996) write the reweighting factor ¥(xx) = TR (x)
as
P(Gendery = ‘man’ | xx)/P(Gendery = ‘man’
B(x) = i = ( k | %)/ P( k )

~ P(Gender = ‘woman’ | x)/P(Gender, = ‘woman’)

@ The idea is to reweigh the characteristics of women so that they
match the characteristics of men, such that
iC = XM»
where XC = ZkESF ¢kaXk/ Zkes,: Q/Jka and
XM = ZkeSM kak/EkESM Wi .
@ The factor 1)(xx) can be estimated by using a probit or a logistic

regression model (DiNardo et al., 1996) or by calibration (Anastasiade
and Tille, 2017).
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Aim

If A(,) is the wage difference between men and women at a given quantile

o, we can write

M F M C C F
A) = Qo) — Qay = (Qay = Qray) + (@) — Qo)

where Q(’Z), Q(%) and Q(’;) are the quantile of order o of men,
counterfactual and women wage distributions, respectively.

N _ AM AF _ (AM AC AC AF
Awa) = Qay = Qo) = (Qay) — Qo) + (@) — Qa)-
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Estimation of the CDF in finite populations

@ The empirical CDF at the U level is defined as

Fanply) = kv 2Y)

@ The classical design-based estimator is

= Y okes Wikl (v < y)
Femp(y) B keSZk s Wk
(S

@ The quantile of order « of y is estimated by

aa,emp(Y) = inf{'i:\emp(y) > a}'
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Parametric approach

@ We assume that U is selected from a superpopulation and Y is a
random variable with the CDF F(.).

@ We include auxiliary information X in the estimation of F(.) by
assuming that Yy | Xk ~ D(vx = h(x} B),8k),k € U.

o We write

= MFp( ) | Xkg) = Z Fo(yg.6) (¥ | Xkg),
keU kGU

where Ay = 1/N, Fp(,, 5)(- | x«) is the CDF of the distribution
D(vk = h(x} B),dx), k € U, and h(.) is a continuous function.
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|
Method 1 for quantile estimation

We propose to estimate the quantile of order a of Y as
Q) = infly | Fu(y) = a},

where I?U(y) is the estimator of Fy(y) in the point y given by

Fuly) = wiFps, 5 (v [ x6)/ Y wi J

keS keS
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Method 2 for quantile estimation

In case the inverse function of I-:U(y) cannot be computed, we propose to
use a Monte Carlo method based on parametric bootstrap.
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Method 2 for quantile estimation

Yik | xk ~ D(h(x] B),d)
Qo .25 6?.5 Qo .75 Qo .95

w1 1% w3 ... Whn
~05 ~0 ~o ~0
yYii Y12 Y13 Yin QS 5 g 5 QS 75 QS 95
21 22 23 ... 2 0. 0. 0.
Yy Y Y Yon Qg 25 Qg 5 Qg 75 Qg 95
—
Y31 Y32 Y33 ...  VYan
Tt e e 60.25 @0.5 60.75 50.95
Ymli Ym2 Ym3 -+ Ymn m 4 m 4

Qoa2s Qos Qors Roos

Remark: Methods 1 and 2 are applied to estimate respectively the
a-quantiles in each group g € {M, F}.
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.
Method 1 for the counterfactual wage distribution

We redefine the counterfactual CDF at the Uf level as

1
Fe(y) = - > i FOFXE (e | x ),
keUFr

where NC = ZkeUF wk-

@ First, we estimate it by

 Yses Ukw FOFXEN (yy | g )

FG. () -
r ZkESF wk Wk

I

where FOFXE)(y, | xy F) = FD(h(xZFﬁp)ﬁp)(y“ | xk.F), and by is
estimated by calibration (Anastasiade and Tillé, 2017).
o Next, Q(%) = inf{y | FEF(y) > a}.
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.
Method 2 for the counterfactual wage distribution

Yik | Xk p~ D(h(x;FBF),S,:)

Qo .25 @{).s Qo .75 Qo .95

Piwr owa L. P Wy,
yi1 yiz ... Ying 3.25 3'5 03.75 Q§-95
y21 Y22 ... Yong Qg25 Qg5 ngs Qg.gs
—

31 Y32 ... Y3ng

02{25 Ql(l)5 027.75 Q2'95
Ym1 Ym2 ... Ymng

~C ~

~C ~C ~C
QO.25 QO.S 00.75 QO.95
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The two methods

@ The proposed methods aim to reduce the variance of the estimated
quantiles compared to the estimation given by the empirical CDF.

@ The methods are correct if the underlined conditional distribution is
correct.

@ Departures from this assumption can be managed by using a GB2
distribution.
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The GB2 distribution

The GB2 distribution is characterized by four parameters, namely a, b, p
and g. The probability density function of a GB2(a, b, p, q) distribution is

given by
()"

bB(p, q)[1 + (%)a]’”q’

where a, p, g are the shape parameters and b is a scale parameter.

f(y;a, b,p,q) =
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Example of GB2 distribution
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N
The GB2 distribution

e We borrow from McDonald and Butler (1990) the idea of changing
the scale parameter, by expressing it as a function of the observed
characteristics.

@ In each group, g € {M, F}, we assume that the conditional wage of
k€ Ug, Y | Xk g = Xk g ~ GB2(ag, exp(xkBg), Pg; g )-

@ Thus, for each k € Uy, the GB2 density becomes

R [ Yk :| agpg—1
exp(x; SB,)

Pg+ag
exp(x, Bg)B(Ppg, Qg){l + [L)] a}

exp(x, .

f[ykv ag’exp(leﬁ.g), Pg> qg] =
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The GB2 distribution
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.
The GB2 regression

We assume that
log(Yig) = Xz’gﬁg + log(ek,g),

where Y} o is the wage of individual k € Uy, ek g ~ GB2(ag,1, pg, qg)-
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N
The GB2 distribution

@ We estimate the parameters of the GB2 distribution using
pseudo-maximum likelihood.

@ We developed an algorithm to estimate the parameters of the GB2
distribution when xy is introduced in the scale parameter.

@ We estimate the standard errors of the estimated parameters using the
sandwich estimator and a parametric bootstrap approach.
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Example - Swiss Survey on Earnings Structure, 2012

- sample of 5643 employees (1880 women, 3763 men) working in the economic
activity ‘Manufacture of computer, electronic and optical products’);

- models with the covariates: age, education level (9 categories), professional
position (5 categories).

NNNNNNN a-aplot

uuuuuuuuuuuuuuu

Figure: QQplot for a log-normal model Figure: QQplot for a GB2 model
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Monte-Carlo simulation

N = Ny = 50,000, ng = ny = 10, 000,
Xi,F ~ N(3,1), X m ~ N(2.5,1), independent,

Yi,F~ LN(1.154+ 25X, r,1), k € Ur

1000 independent srswor samples of size ng from Ug,

At the population level: ¥y = fy(2.51)(Xk,F)/fn 1) (XiF), k € U,
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Monte-Carlo variance
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Monte-Carlo bias
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N
Monte-Carlo RMSE
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Monte-Carlo CV
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N
Conclusions

@ Wages usually have heavy-tailed distributions, which makes it difficult
to fit a distribution for them.

@ We propose two parametric methods to estimate the quantiles (and
differences between the quantiles).

@ The introduction of the covariates aims to reduce the variance of the
estimates.
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