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Introduction

» Multilevel models= special case of the generalized mixed
model, used for the analysis of survey data with several levels
(strata, clusters, units)

» Binder (1983), Gourieroux et al.(1984), Skinner et al. (1989),
Pfeffermann et al. (1998) : pseudo-likelihood for surveys with
unequal inclusion probabilities.

» In multi-stage surveys, scaling of weights influence the
parameter estimates (see e.g. Rabe-Hesketh and Skrondal,
2006 and Asparouhov, 2006).

» No theory on the choice of scaling.
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Alternatives to the pseudo-likelihood

» Rao et al. (2013) propose a method by estimating functions
that have good asymptotic properties.

» Sampling density conditional on the distribution of weights for
non-ignorable designs, e.g. Pfeffermann (2011).
Bonnéry et al. (2018) establish asymptotic properties of the
likelihood obtained with this density.
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Goal

» Given a postulated population distribution,
» obtain the pseudo-likelihood,
» find a proper likelihood

» belonging to the same family of distributions as the population
distribution
P as "close” as possible to the pseudo-likelihood.

» Derive a method for rationally choosing the scaling of weights.
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One stage

Consider a one stage design. Let

» {y;,w;,i =1,...n} = sampled units and the corresponding
extrapolation weights.

P y; : realization of a random variable Y;

» a model : Y; are i.i.d with pdf f(.;0) depending on a set of
parameters 6.

pseudo-lik: One stage design



Pseudo-log-likelihood

In a one-stage design, the pseudo-log-likelihood given by

(P (6; y, w) = Zwl log f(yi, 0 Zlogf Yi,0
i=1

¢pseudo is 5 proper log-likelihood, if it can be written as a sum
of log-densities, up to a constant term not depending on the
parameters.

1. Conditions for £P*¢49° to be a proper log-likelihood, ¢ProPer ?

2. Conditions for pdf Kflf(y,-, 0)"i to belong to the same family
of distributions as f(y;, 0)?

3. Conditions for the parameters of £P5€Ud0 and (ProPer to
coincide ?
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Correction term - One stage design

In general,

/ f(y,0)" dy = K(xw;, 8) = K; = K *f(y,8)" is a pdf.

—0o0

o = e, 0007
Thus
Epseudo — pProper Z |og[K(XW,', 9)] — Z XWi IOg[K(la 0)]

(ProPer 1 C(xw, 6).
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Equivalence condition

¢Pseude equivalent to £ProPe

<~
C(xw, 0) = C(xw).
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Sampling pdf

> K(w;,0)71f(y,0)" can be interpreted as the sampling pdf of
Y;, the random variable associated to the i-th sampled unit.

» observations are no longer identically distributed, but still
independent (according to the model).
» the sampling pdf depends on the scaling of weights.

How to choose the scaling ?
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Canonical scaling

» A proper likelihood is the sum of n log-densities where n is the
sample size.
> Ww;,i=1,...,n = provided weights.

» Canonical weights :

Wi =Ner—> = sum to n.

» Another scaling can always be defined from the canonical
weights.
x = scaling factor
xw; = scaled weight.
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Normal distribution - One stage design

> Vi~ N(pj,0?)

> X = matrix of auxiliary variables;
> x! = j-th row of X

> i =E(Y;) =x{3

» parameters : 0 = (3, 0)
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Normal distribution - One stage design
» Population log-likelihood

¢ 1 1 (yi — i)
PoP(B,0;,y) = lo exp | —= 2L 12 .
(B,0:y) ;g<0m p<2 g ))
» Pseudo-log-likelihood
n
1 1(y; — pi)?
gPseudo(3 iy xw) = xw;j lo [ ex (—
(8,07 y, xw) ; A e
» Proper log-likelihood

s - S e (3525

» Correction term

C(x,w,0) = Z(xw,- —1)log <U\}27T> - % log (H xw,~>
i=1

i=1
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Normal distribution - One stage design

» The correction term can be simplified,

C(x,w,0) = n {(x —1)log < ) - %[Iog(x) + Iog(G)]}

1
oV 2w

where G is the geometric mean of the canonical weights.
» C does not depend on 3.

~ pseudo

> 3
> (PrOPEr(3. 0y, xw) = (PP (3. o /\/x;y,w) thus

and P49 do not depend on x.

gpseudo — GPIOPEr \where o = 0 /v/X.
» ( does not depend on o if and only if x = 1.

With the canonical weights, it is equivalent to estimate the
parameters using the pseudo- or the proper log-likelihood.
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Exponential distribution - One stage design

gly;b) =

g¥(yib) = <2>We><p (f%

= glyib/w) ———

1
le

boe ()

)

y>0;, b>0.

~ 57w (“5) v

The pseudo-log-likelihood is given by

d
(PSEUe (b y, xw)

ZXWI IOg yh ))

1

w

= (PP (b;y, xw) — nlog(xG) — Z(XWi — 1) log(b).
i=1

C(x,w, b) =

Same form as before.
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Generalized gamma distribution - One stage design

» Probability density of Y ~ GG(a, b, p) :

a

Biab.p) = Fos(r/B)Peol-(y/b7), abp>0.

In the applications, b = exp(x'3), where x is a vector of
auxiliary variables.

» Change of variable : u = log(y); pdf of log(Y) :

o b.p) = (/01 ol —(e"/b)')
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Which pseudo-likelihood ?

(PseUdo hased on g £ (P%U% based on f

> (pseudo hased on g : weights are applied to y
» (Pseudo hased on f : weights are applied to log(y)

Weights do not have the same meaning according to the model.

Good reason to choose f :
the sampling density is more similar to the population density.
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Generalized gamma distribution - One stage design

The proper log-likelihood is the sum of log-densities, pdf of
GG(a, b/(xw))Y2, pxw;).
Correction term for the pseudo-log-likelihood :

Clx,w,a,p) — Zlog{[r(‘;)]xm F(wa,')}

a

= nlx—1)log(a) — nxlog(T(p)) + > _ log(T (pxw;))

1

» ( does not depend on b
> if x =1, C does not depend on a
» if w; # 1, the dependence on p remains.

With unequal weights, £P*€49° and ¢Proper will give different
estimates.
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Three approximations of digamma(p)

1.80256

k=
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Generalized gamma distribution - One stage design
Set x = 1.
Gi(p) = C(L,w,a,p) = —nlog(T'(p)) + 3_; log(T'(p w;)).

0 0 d
7£pseudo — _ ygproper —C
op op 9 1(p),

chl(p) = —n(p)+ Z wih(p w;)

Q

o 3] Sl s
= Z w; log(w;).

1
dfpcl(P) = zf:wﬂog(wi)izp-
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Generalized gamma distribution - One stage design

» Noufaily and Jones (2013) unweighted case : the score
equation in p is strictly decreasing for given values of a and b.

P This property extends to the weighted case.
» It can be shown that if n > 3, Y. w; log(w;) is always positive.

Thus in general we expect

f)pseudo > [3 proper
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Two stage design

Primary sampling units (PSU) are selected and within each PSU a

sample is selected.
Hypothesis : The model includes an additive random effect that

corresponds to the PSU of the design.
Within each PSU j, weights W;; are provided for the ultimate
unit i,7 € J.

» n; = sample size in PSU .

wijj = nj% = W’JJ = canonical weight within primary

unit J.

» observations within PSU j are conditionally independent given
random effect V;,

» fi(y — v;0) = conditional pdf of Yj; given the random effect
Vi =v.

» within PSU pseudo-log-likelihood =

(25490 (0; y; — v, xwj) = Yoy xwlog[fi(yi — v; 0)]

| 4
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Two stage design

» V = latent unobserved PSU effect with pdf f(v; ©).
> WJ = provided weight of PSU j,j =1, ..., c.
» W; = canonical weight of PSU J,
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Two stage design

Total pseudo-log-likelihood =

gpseude(9 @; {yj, xwj,j = 1,..,c}; tW)

c

= Z tW; log [/ exp(ﬁj’?se“do(H;yj — vl xwj)f(v; O)dv}

Jj=1
c

= Z tW; log [/ exp(ﬁj’.’mper(o; yj — vln, xwj)f(v; @)dv}

j=1
+ZC: tW; [Cij(xw;; 6)]
=1
= Eprjo”er(e, O;{yj,xwj,j =1,..,c}; tW)
—i—i tW; [Cj(xwj; 0)] + G({xwj,j =1,...,c}, tW;0,0)

j=1
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Normal distribution - Two stage design
Population model :
> Y~ N(x}B8 —v,0°),i =1,..., n; independent observations
with pdf fi(y — v; 0) given random effect V; = v.
> 0 =(n)
> V; ~ N(0,7%),j =1,...,c : independent random effects
with pdf f(v; ©) =
The model and the within-PSU weighting scheme imply
Sampling distribution :
(Y1,...,Y) are independent vectors with
t a® -1 291 T
YJ' ~ N(Xjﬁ, I‘J-) Fj = 7d1ag(wj) +n 11°.

2 2
n NN° + o0°/x

Gj = geometric mean of weights (wjj, i =1,..., nj) = w;.
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Normal distribution - Two stage design

Correction term

C({xwj,j=1,...c},tW;o,n) = > tW;Cj+ G =G+ G
J

2, = -— Z tW;n; {(x — 1) log (2m0?) + [log(x) + log(G;)] }
26 = zn, log(WW;) + (tW; — 1) log[det(T )]
— Z n;llog(tW;) + (tW; — 1) log(G;)]
n; 2 0'2 X
— (X )~ 1) log(o?/x)] + (W — 1) log [’Cf/x/} -

J J
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Normal distribution - Two stage design

» x = 1 makes C; independent of o i.e.

x=1= ﬂj’-’se“do and (7" are equivalent for all ;.
» if moreover t =1, (, is independent of o and 7 in two
instances :
1. if nj=n,then ;=T and >, W; =c,

c
2C, = 'y [log(W))]
j=1
2 i W =1,
2G, = 0.
In all other cases, the overall log-likelihoods ¢P%€49° and ¢ProPer will
give different estimates.
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Multivariate generalized beta distribution (MGB2)

Two stage design

MGB2 distribution (Yang et al., 2010) :
a set of n random variables Y = (Y1, ..., Y;,) conditionally
independent given a random scale parameter ©, with pdf

Y|{© =0} ~ GG(a, (67Y/?b), p)

© ~ invGa(q) with pdf

1 1
0,q) = =090~

Graf, Marin and Molina (2018) use this setting in the context of
small area estimation.

> O :latent area effect
» log(b) = X3 : model on scale
» a, p and q : shape parameters
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MGB2 - two stage

Aim : incorporate weights.
Same setting as in the normal case.
» PSU j : sample size nj,j =1,...,c,

canonical weights w; = (wj;,i =1,..., n))
log(byj) = x};

PSU canonical weights : W;

x and t scaling factors.

7P sum of log-densities GG(a, (Oxw;;) Y 2by;, pxwy)

©; ~ invG(tW;q)

PSU are independent.

vVvYvyyvyy
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MGB2 - two stage

Correction terms

n;

Cij(x) = nj(x—1)log(a) — njxlog(F'(p)) + Z log(I(xwj;p))
i=1

G(t,x) = c(t—1)log(a)+

< M(xnjp+ q)
Wi:lo : -
2t [r(cn H,-";l[r(xw,-jm]]

Jj=1

c r(tVijnjp + tWjq)
| :

f:1

C(t,x) = ZtWClj )+ Ga(t, x).
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MGB2 - two stage

does not depend on a if and only if t =1 and x = 1.

> C(t,x)
» C(1,1) does not depend on g, if W; = 1.
» C(1,1) still depends on p and g, if nj = n.

I

» C(1,1) still depends on p and q, if w;j =1 but W; # 1.

The estimates based on ¢PrOPer or ¢Pseudo \yon't coincide, except if
all the canonical weights are 1.
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Discussion

» Design properties of canonical weights.

» Underestimation of between-cluster variance in Gaussian
model mentioned by e.g. Rabe-Hesketh and Skrondal (2006)
when the expectation of weighted estimates is computed from
the population model.

It does not occur if the sampling distribution is used.

» Advantage of having a sampling density over a method of
moments.

» Simpler than the sampling density based on modeling the
weights.
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