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Introduction

I Multilevel models= special case of the generalized mixed
model, used for the analysis of survey data with several levels
(strata, clusters, units)

I Binder (1983), Gourieroux et al.(1984), Skinner et al. (1989),
Pfeffermann et al. (1998) : pseudo-likelihood for surveys with
unequal inclusion probabilities.

I In multi-stage surveys, scaling of weights influence the
parameter estimates (see e.g. Rabe-Hesketh and Skrondal,
2006 and Asparouhov, 2006).

I No theory on the choice of scaling.
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Alternatives to the pseudo-likelihood

I Rao et al. (2013) propose a method by estimating functions
that have good asymptotic properties.

I Sampling density conditional on the distribution of weights for
non-ignorable designs, e.g. Pfeffermann (2011).
Bonnéry et al. (2018) establish asymptotic properties of the
likelihood obtained with this density.

pseudo-lik: Introduction 4



Goal

I Given a postulated population distribution,

I obtain the pseudo-likelihood,
I find a proper likelihood

I belonging to the same family of distributions as the population
distribution

I as ”close” as possible to the pseudo-likelihood.

I Derive a method for rationally choosing the scaling of weights.
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One stage

Consider a one stage design. Let

I {yi ,wi , i = 1, ...n} = sampled units and the corresponding
extrapolation weights.

I yi : realization of a random variable Yi

I a model : Yi are i.i.d with pdf f (.;θ) depending on a set of
parameters θ.
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Pseudo-log-likelihood

In a one-stage design, the pseudo-log-likelihood given by

`pseudo(θ; y,w) =
n∑

i=1

wi log f (yi ,θ) =
n∑

i=1

log f (yi ,θ)wi .

`pseudo is a proper log-likelihood, if it can be written as a sum
of log-densities, up to a constant term not depending on the
parameters.

1. Conditions for `pseudo to be a proper log-likelihood, `proper ?

2. Conditions for pdf K−1
i f (yi ,θ)wi to belong to the same family

of distributions as f (yi ,θ) ?

3. Conditions for the parameters of `pseudo and `proper to
coincide ?
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Correction term - One stage design

In general,∫ ∞
−∞

f (y ,θ)xwi dy = K (xwi ,θ) = Ki =⇒ K−1
i f (y ,θ)xwi is a pdf.

`proper
.

=
n∑

i=1

log[K (xwi ,θ)−1f (y ,θ)xwi ]

Thus

`pseudo = `proper +
∑
i

log[K (xwi ,θ)]−
∑
i

xwi log[K (1,θ)]

= `proper + C (xw,θ).
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Equivalence condition

`pseudo equivalent to `proper

⇐⇒
C (xw,θ) = C (xw).
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Sampling pdf

I K (wi ,θ)−1f (y ,θ)wi can be interpreted as the sampling pdf of
Yi , the random variable associated to the i-th sampled unit.

I observations are no longer identically distributed, but still
independent (according to the model).

I the sampling pdf depends on the scaling of weights.

How to choose the scaling ?
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Canonical scaling

I A proper likelihood is the sum of n log-densities where n is the
sample size.

I w̃i , i = 1, ..., n = provided weights.

I Canonical weights :

wi = n
w̃i∑n

k=1 w̃k
=

w̃i

¯̃w
sum to n.

I Another scaling can always be defined from the canonical
weights.
x = scaling factor
xwi = scaled weight.
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Normal distribution - One stage design

I Yi ∼ N(µi , σ
2)

I X = matrix of auxiliary variables ;

I xti = i-th row of X

I µi = E(Yi )
.

= xtiβ

I parameters : θ = (β, σ)
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Normal distribution - One stage design
I Population log-likelihood

`pop(β, σ; y) =
N∑
i=1

log

(
1

σ
√

2π
exp

(
−1

2

(yi − µi )2

σ2

))
.

I Pseudo-log-likelihood

`pseudo(β, σ; y, xw) =
n∑

i=1

xwi log

[
1

σ
√

2π
exp

(
−1

2

(yi − µi )2

σ2

)]
I Proper log-likelihood

`proper (β, σ; y, xw) =
n∑

i=1

log

[ √
xwi

(σ
√

2π)
exp

(
−1

2

(yi − µi )2

(σ/
√
xwi )2

)]
I Correction term

C (x ,w,θ) =
n∑

i=1

(xwi − 1) log

(
1

σ
√

2π

)
− 1

2
log

(
n∏

i=1

xwi

)
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Normal distribution - One stage design

I The correction term can be simplified,

C (x ,w, σ) = n

{
(x − 1) log

(
1

σ
√

2π

)
− 1

2
[log(x) + log(G )]

}
where G is the geometric mean of the canonical weights.

I C does not depend on β.

I β̂
pseudo

and σ̂pseudo do not depend on x .

I `proper (β, σ; y, xw) ≡ `proper (β, σ/
√
x ; y,w) thus

σ̂pseudo = σ̂x
proper where σx = σ/

√
x .

I C does not depend on σ if and only if x = 1.
With the canonical weights, it is equivalent to estimate the
parameters using the pseudo- or the proper log-likelihood.
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Exponential distribution - One stage design

g(y ; b) =
1

b
exp

(
−y

b

)
y > 0; b > 0.

gw (y ; b) =

(
1

b

)w

exp
(
−wy

b

)
=

1

b/w
exp

(
− y

b/w

)
1

wbw−1

= g(y ; b/w)
1

wbw−1
.

The pseudo-log-likelihood is given by

`pseudo(b; y, xw) =
n∑

i=1

xwi log (g(yi ; b))

= `proper (b; y, xw)− n log(xG )−
n∑

i=1

(xwi − 1) log(b).

C (x ,w, b) = −n {log(x) + (x − 1) log(b) + log(G )}
Same form as before.
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Generalized gamma distribution - One stage design

I Probability density of Y ∼ GG (a, b, p) :

g(y ; a, b, p) =
a

Γ(p)
(y/b)ap exp{−(y/b)a}1

y
a, b, p > 0.

In the applications, b = exp(xtβ), where x is a vector of
auxiliary variables.

I Change of variable : u = log(y) ; pdf of log(Y ) :

f (u; a, b, p) =
a

Γ(p)
(eu/b)ap exp{−(eu/b)a}
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Which pseudo-likelihood ?

`pseudo based on g 6= `pseudo based on f

I `pseudo based on g : weights are applied to y

I `pseudo based on f : weights are applied to log(y)

Weights do not have the same meaning according to the model.

Good reason to choose f :
the sampling density is more similar to the population density.
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Generalized gamma distribution - One stage design

The proper log-likelihood is the sum of log-densities, pdf of
GG (a, b/(xwi )

1/a, pxwi ).
Correction term for the pseudo-log-likelihood :

C (x ,w, a, p) =
∑
i

log

{[
a

Γ(p)

]xwi Γ(pxwi )

a

}
= n(x − 1) log(a)− nx log(Γ(p)) +

∑
i

log(Γ(pxwi ))

I C does not depend on b

I if x = 1, C does not depend on a

I if wi 6= 1, the dependence on p remains.

With unequal weights, `pseudo and `proper will give different
estimates.

pseudo-lik: One stage design 18



0 2 4 6 8 10

−
2

−
1

0
1

2

Three approximations of digamma(p) 
k = 1.80256

p

digamma(p) − log(p) +     1/p
digamma(p) − log(p) + 1/(k*p)
digamma(p) − log(p) + 1/(2*p)

pseudo-lik: One stage design 19



Generalized gamma distribution - One stage design
Set x = 1.
C1(p) = C (1,w, a, p) = −n log(Γ(p)) +

∑
i log(Γ(p wi )).

∂

∂p
`pseudo =

∂

∂p
`proper +

d

dp
C1(p),

d

dp
C1(p) = −nψ(p) +

∑
i

wiψ(p wi )

≈ −n
[

log(p)− 1

kp

]
+
∑
i

wi

[
log(wip)− 1

kwip

]
=

∑
i

wi log(wi ).

d

dp
C1(p) =

∑
i

wi log(wi )±
1

2p
.
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Generalized gamma distribution - One stage design

I Noufaily and Jones (2013) unweighted case : the score
equation in p is strictly decreasing for given values of a and b.

I This property extends to the weighted case.

I It can be shown that if n ≥ 3,
∑

i wi log(wi ) is always positive.

Thus in general we expect

p̂pseudo > p̂proper .
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Two stage design
Primary sampling units (PSU) are selected and within each PSU a
sample is selected.
Hypothesis : The model includes an additive random effect that
corresponds to the PSU of the design.
Within each PSU j , weights w̃ij are provided for the ultimate
unit i , i ∈ j .

I nj = sample size in PSU j .

I wij = nj
w̃ij∑n

k=1 w̃kj
=

w̃ij
¯̃wj

= canonical weight within primary

unit j .

I observations within PSU j are conditionally independent given
random effect Vj ,

I f1(y − v ;θ) = conditional pdf of Yij given the random effect
Vj = v .

I within PSU pseudo-log-likelihood =
`pseudoj (θ; yj − v1nj , xwj) =

∑nj
i=1 xwij log[f1(yij − v ;θ)]
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Two stage design

I V = latent unobserved PSU effect with pdf f2(v ; Θ).

I W̃j = provided weight of PSU j , j = 1, ..., c .

I Wj = canonical weight of PSU j ,

Wj =
c∑

k=1

nk
W̃j∑c

k=1 nkW̃k

=
W̃j

¯̃Wn

.

Total sample size : ∑
j

nj =
∑
j

njWj .
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Two stage design

Total pseudo-log-likelihood =

`pseudo(θ,Θ; {yj , xwj , j = 1, .., c}; tW)

=
c∑

j=1

tWj log

[∫ ∞
−∞

exp(`pseudoj (θ; yj − v1nj , xwj)f2(v ; Θ)dv

]

=
c∑

j=1

tWj log

[∫ ∞
−∞

exp(`properj (θ; yj − v1nj , xwj)f2(v ; Θ)dv

]

+
c∑

j=1

tWj [C1j(xwj ;θ)]

= `proper (θ,Θ; {yj , xwj , j = 1, .., c}; tW)

+
c∑

j=1

tWj [C1j(xwj ;θ)] + C2({xwj , j = 1, ..., c}, tW;θ,Θ)
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Normal distribution - Two stage design
Population model :

I θ = (β, σ)

I Yij ∼ N(xtijβ − v , σ2), i = 1, ..., nj independent observations
with pdf f1(y − v ;θ) given random effect Vj = v .

I Θ = (η)

I Vj ∼ N(0, η2), j = 1, ..., c : independent random effects
with pdf f2(v ; Θ) =

The model and the within-PSU weighting scheme imply
Sampling distribution :
(Y1, ...,Yc) are independent vectors with

Yj ∼ N(Xt
jβ, Γj) Γj =

σ2

x
diag(wj)

−1 + η211T .

det(Γj) =
(
Gj σ

2/x
)nj njη2 + σ2/x

σ2/x
.

Gj = geometric mean of weights (wij , i = 1, ..., nj) = wj .
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Normal distribution - Two stage design

Correction term

C ({xwj , j = 1, ..., c}, tW;σ, η) =
∑
j

tWjC1j + C2 = C1 + C2

2C1 = −
∑
j

tWjnj
{

(x − 1) log
(
2πσ2

)
+ [log(x) + log(Gj)]

}
2C2 =

∑
j

nj log(Wj) + (tWj − 1) log[det(Γj)]

=
∑
j

nj [log(tWj) + (tWj − 1) log(Gi )]

− (
∑
j

nj)(t − 1) log(σ2/x)] +
∑
j

(tWj − 1) log

[
njη

2 + σ2/x

σ2/x

]
.
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Normal distribution - Two stage design

I x = 1 makes C1 independent of σ i.e.

x = 1 =⇒ `pseudoj and `properj are equivalent for all j .

I if moreover t = 1, C2 is independent of σ and η in two
instances :

1. if nj = n, then Γj = Γ and
∑

j Wj = c ,

2C2 = n
c∑

j=1

[log(Wj)]

2. if Wj = 1,
2C2 = 0.

In all other cases, the overall log-likelihoods `pseudo and `proper will
give different estimates.
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Multivariate generalized beta distribution (MGB2)
Two stage design

MGB2 distribution (Yang et al., 2010) :
a set of n random variables Y = (Y1, ...,Yn) conditionally
independent given a random scale parameter Θ, with pdf

Y|{Θ = θ} ∼ GG (a, (θ−1/ab), p)

Θ ∼ invGa(q) with pdf

g(θ; q) =
1

Γ(q)
θ−qe−θ

1

θ

Graf, Maŕın and Molina (2018) use this setting in the context of
small area estimation.

I Θ :latent area effect

I log(b) = Xβ : model on scale

I a, p and q : shape parameters
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MGB2 - two stage

Aim : incorporate weights.
Same setting as in the normal case.

I PSU j : sample size nj , j = 1, ..., c ,
canonical weights wj = (wij , i = 1, ..., nj)
log(bij) = xtijβ

I PSU canonical weights : Wj

I x and t scaling factors.

I `properj : sum of log-densities GG (a, (θxwij)
−1/abij , pxwij)

I Θj ∼ invG (tWjq)

I PSU are independent.
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MGB2 - two stage

Correction terms

C1j(x) = nj(x − 1) log(a)− njx log(Γ(p)) +

nj∑
i=1

log(Γ(xwijp))

C2(t, x) = c(t − 1) log(a) +
c∑

j=1

tWj log

[
Γ(xnjp + q)

Γ(q)
∏nj

i=1[Γ(xwijp)]

]
−

c∑
j=1

log

[
Γ(tWjxnjp + tWjq)

Γ(tWjq)
∏nj

i=1[Γ(tWjxwijp)]

]

C (t, x) =
c∑

j=1

tWjC1j(x) + C2(t, x).
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MGB2 - two stage

I C (t, x) does not depend on a if and only if t = 1 and x = 1.

I C (1, 1) does not depend on q, if Wj = 1.

I C (1, 1) still depends on p and q, if nj = n.

I C (1, 1) still depends on p and q, if wij = 1 but Wj 6= 1.

The estimates based on `proper or `pseudo won’t coincide, except if
all the canonical weights are 1.
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Discussion

I Design properties of canonical weights.

I Underestimation of between-cluster variance in Gaussian
model mentioned by e.g. Rabe-Hesketh and Skrondal (2006)
when the expectation of weighted estimates is computed from
the population model.
It does not occur if the sampling distribution is used.

I Advantage of having a sampling density over a method of
moments.

I Simpler than the sampling density based on modeling the
weights.
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