

Une interprétation de la pseudo-vraisemblance -An interpretation of the pseudo-likelihood

Monique Graf Institut de Statistique - Université de Neuchâtel, Switzerland and Elpacos Statistics, la Neuveville, Switzerland

> 10e Colloque Francophone sur les Sondages Université de Lyon

pseudo-lik:

Outline

Introduction

One stage design

Two stage design

Discussion

pseudo-lik:

Introduction

- Multilevel models= special case of the generalized mixed model, used for the analysis of survey data with several levels (strata, clusters, units)
- ▶ Binder (1983), Gourieroux et al.(1984), Skinner et al. (1989), Pfeffermann et al. (1998): pseudo-likelihood for surveys with unequal inclusion probabilities.
- ▶ In multi-stage surveys, scaling of weights influence the parameter estimates (see e.g. Rabe-Hesketh and Skrondal, 2006 and Asparouhov, 2006).
- ▶ No theory on the choice of scaling.

Alternatives to the pseudo-likelihood

- ▶ Rao et al. (2013) propose a method by estimating functions that have good asymptotic properties.
- Sampling density conditional on the distribution of weights for non-ignorable designs, e.g. Pfeffermann (2011). Bonnéry et al. (2018) establish asymptotic properties of the likelihood obtained with this density.

Goal

- Given a postulated population distribution,
- obtain the pseudo-likelihood,
- ► find a proper likelihood
 - belonging to the same family of distributions as the population distribution
 - as "close" as possible to the pseudo-likelihood.
- Derive a method for rationally choosing the scaling of weights.

pseudo-lik: Introduction

One stage

Consider a one stage design. Let

- ▶ $\{y_i, w_i, i = 1, ...n\}$ = sampled units and the corresponding extrapolation weights.
- \triangleright y_i : realization of a random variable Y_i
- ▶ a model : Y_i are i.i.d with pdf $f(.; \theta)$ depending on a set of parameters θ .

Pseudo-log-likelihood

In a one-stage design, the pseudo-log-likelihood given by

$$\ell^{pseudo}(\boldsymbol{\theta}; \mathbf{y}, \mathbf{w}) = \sum_{i=1}^{n} w_i \log f(y_i, \boldsymbol{\theta}) = \sum_{i=1}^{n} \log f(y_i, \boldsymbol{\theta})^{w_i}.$$

 ℓ^{pseudo} is a proper log-likelihood, if it can be written as a sum of log-densities, up to a constant term not depending on the parameters.

- 1. Conditions for ℓ^{pseudo} to be a proper log-likelihood, ℓ^{proper} ?
- 2. Conditions for pdf $K_i^{-1}f(y_i,\theta)^{w_i}$ to belong to the same family of distributions as $f(y_i,\theta)$?
- 3. Conditions for the parameters of ℓ^{pseudo} and ℓ^{proper} to coincide?

Correction term - One stage design

In general,

$$\int_{-\infty}^{\infty} f(y,\theta)^{xw_i} \, dy = K(xw_i,\theta) = K_i \Longrightarrow K_i^{-1} f(y,\theta)^{xw_i} \text{ is a pdf.}$$

$$\ell^{proper} \doteq \sum_{i=1}^{n} \log[K(xw_i,\theta)^{-1} f(y,\theta)^{xw_i}]$$

Thus

$$\ell^{pseudo} = \ell^{proper} + \sum_{i} \log[K(xw_{i}, \theta)] - \sum_{i} xw_{i} \log[K(1, \theta)]$$

$$= \ell^{proper} + C(x\mathbf{w}, \theta).$$

Equivalence condition

$$\ell^{ extit{pseudo}}$$
 equivalent to $\ell^{ extit{proper}}$ \iff $C(x\mathbf{w},oldsymbol{ heta})=C(x\mathbf{w}).$

Sampling pdf

- $K(w_i, \theta)^{-1} f(y, \theta)^{w_i}$ can be interpreted as the sampling pdf of Y_i , the random variable associated to the *i*-th sampled unit.
- observations are no longer identically distributed, but still independent (according to the model).
- ▶ the sampling pdf depends on the scaling of weights.

How to choose the scaling?

Canonical scaling

- ▶ A proper likelihood is the sum of *n* log-densities where *n* is the sample size.
- \tilde{w}_i , i = 1, ..., n = provided weights.
- ► Canonical weights :

$$w_i = n \frac{\widetilde{w}_i}{\sum_{k=1}^n \widetilde{w}_k} = \frac{\widetilde{w}_i}{\overline{\widetilde{w}}}$$
 sum to n .

Another scaling can always be defined from the canonical weights.

x =scaling factor $xw_i =$ scaled weight.

Normal distribution - One stage design

- $ightharpoonup Y_i \sim N(\mu_i, \sigma^2)$
- ► X = matrix of auxiliary variables;
- $\mathbf{x}_{i}^{t} = i$ -th row of \mathbf{X}
- ightharpoonup parameters : $oldsymbol{ heta}=(oldsymbol{eta},\sigma)$

Normal distribution - One stage design

► Population log-likelihood

$$\ell^{pop}(\boldsymbol{\beta}, \sigma; \mathbf{y}) = \sum_{i=1}^{N} \log \left(\frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{1}{2} \frac{(y_i - \mu_i)^2}{\sigma^2} \right) \right).$$

Pseudo-log-likelihood

$$\ell^{pseudo}(\boldsymbol{\beta}, \sigma; \mathbf{y}, x\mathbf{w}) = \sum_{i=1}^{n} xw_i \log \left[\frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{1}{2} \frac{(y_i - \mu_i)^2}{\sigma^2} \right) \right]$$

Proper log-likelihood

$$\ell^{proper}(\boldsymbol{\beta}, \sigma; \mathbf{y}, x\mathbf{w}) = \sum_{i=1}^{n} \log \left[\frac{\sqrt{xw_i}}{(\sigma\sqrt{2\pi})} \exp\left(-\frac{1}{2} \frac{(y_i - \mu_i)^2}{(\sigma/\sqrt{xw_i})^2}\right) \right]$$

Correction term

$$C(x, \mathbf{w}, \boldsymbol{\theta}) = \sum_{i=1}^{n} (xw_i - 1) \log \left(\frac{1}{\sigma \sqrt{2\pi}} \right) - \frac{1}{2} \log \left(\prod_{i=1}^{n} xw_i \right)$$

Normal distribution - One stage design

▶ The correction term can be simplified,

$$C(x, \mathbf{w}, \sigma) = n \left\{ (x - 1) \log \left(\frac{1}{\sigma \sqrt{2\pi}} \right) - \frac{1}{2} [\log(x) + \log(G)] \right\}$$

where G is the geometric mean of the canonical weights.

- ightharpoonup C does not depend on β .
- $ightharpoonup \hat{eta}^{pseudo}$ and $\hat{\sigma}^{pseudo}$ do not depend on x.
- $\ell^{proper}(\boldsymbol{\beta}, \sigma; \mathbf{y}, x\mathbf{w}) \equiv \ell^{proper}(\boldsymbol{\beta}, \sigma/\sqrt{x}; \mathbf{y}, \mathbf{w}) \text{ thus}$ $\hat{\sigma}^{pseudo} = \widehat{\sigma_x}^{proper} \text{ where } \sigma_x = \sigma/\sqrt{x}.$
- ▶ C does not depend on σ if and only if x=1. With the canonical weights, it is equivalent to estimate the parameters using the pseudo- or the proper log-likelihood.

Exponential distribution - One stage design

$$g(y;b) = \frac{1}{b} \exp\left(-\frac{y}{b}\right) \qquad y > 0; \ b > 0.$$

$$g^{w}(y;b) = \left(\frac{1}{b}\right)^{w} \exp\left(-\frac{wy}{b}\right) = \frac{1}{b/w} \exp\left(-\frac{y}{b/w}\right) \frac{1}{wb^{w-1}}$$

$$= g(y;b/w) \frac{1}{wb^{w-1}}.$$

The pseudo-log-likelihood is given by

$$\ell^{pseudo}(b; \mathbf{y}, x\mathbf{w}) = \sum_{i=1}^{n} xw_i \log (g(y_i; b))$$

$$= \ell^{proper}(b; \mathbf{y}, x\mathbf{w}) - n \log(xG) - \sum_{i=1}^{n} (xw_i - 1) \log(b).$$

$$C(x, \mathbf{w}, b) = -n \{\log(x) + (x - 1) \log(b) + \log(G)\}$$

Same form as before.

Generalized gamma distribution - One stage design

▶ Probability density of $Y \sim GG(a, b, p)$:

$$g(y; a, b, p) = \frac{a}{\Gamma(p)} (y/b)^{ap} \exp\{-(y/b)^a\} \frac{1}{y} \quad a, b, p > 0.$$

In the applications, $b = \exp(\mathbf{x}^t \boldsymbol{\beta})$, where \mathbf{x} is a vector of auxiliary variables.

▶ Change of variable : u = log(y); pdf of log(Y) :

$$f(u; a, b, p) = \frac{a}{\Gamma(p)} (e^{u}/b)^{ap} \exp\{-(e^{u}/b)^{a}\}$$

Which pseudo-likelihood?

 ℓ^{pseudo} based on $g \neq \ell^{pseudo}$ based on f

- $ightharpoonup \ell^{pseudo}$ based on g : weights are applied to ${f y}$
- $ightharpoonup \ell^{pseudo}$ based on f : weights are applied to $\log(\mathbf{y})$

Weights do not have the same meaning according to the model.

Good reason to choose f: the sampling density is more similar to the population density.

Generalized gamma distribution - One stage design

The proper log-likelihood is the sum of log-densities, pdf of $GG(a, b/(xw_i)^{1/a}, pxw_i)$.

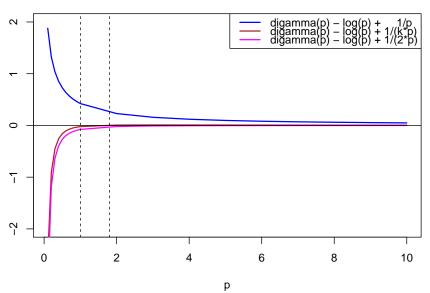
Correction term for the pseudo-log-likelihood:

$$C(x, \mathbf{w}, a, p) = \sum_{i} \log \left\{ \left[\frac{a}{\Gamma(p)} \right]^{xw_{i}} \frac{\Gamma(pxw_{i})}{a} \right\}$$
$$= n(x - 1) \log(a) - nx \log(\Gamma(p)) + \sum_{i} \log(\Gamma(pxw_{i}))$$

- C does not depend on b
- ightharpoonup if x = 1, C does not depend on a
- ▶ if $w_i \neq 1$, the dependence on p remains.

With unequal weights, ℓ^{pseudo} and ℓ^{proper} will give different estimates.

Three approximations of digamma(p) k = 1.80256



Generalized gamma distribution - One stage design

Set
$$x = 1$$
.
$$C_1(p) = C(1, \mathbf{w}, a, p) = -n \log(\Gamma(p)) + \sum_i \log(\Gamma(p w_i)).$$

$$\frac{\partial}{\partial p} \ell^{pseudo} = \frac{\partial}{\partial p} \ell^{proper} + \frac{d}{dp} C_1(p),$$

$$\frac{d}{dp}C_1(p) = -n\psi(p) + \sum_i w_i\psi(p\,w_i)$$

$$\approx -n\left[\log(p) - \frac{1}{kp}\right] + \sum_i w_i\left[\log(w_ip) - \frac{1}{kw_ip}\right]$$

$$= \sum_i w_i\log(w_i).$$

$$\frac{d}{dp}C_1(p) = \sum_i w_i\log(w_i) \pm \frac{1}{2p}.$$

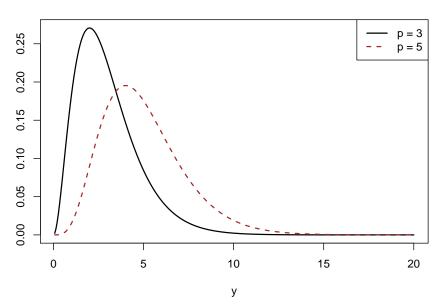
Generalized gamma distribution - One stage design

- ▶ Noufaily and Jones (2013) unweighted case : the score equation in *p* is strictly decreasing for given values of *a* and *b*.
- This property extends to the weighted case.
- ▶ It can be shown that if $n \ge 3$, $\sum_i w_i \log(w_i)$ is always positive.

Thus in general we expect

$$\hat{p}^{pseudo} > \hat{p}^{proper}$$
.

Densities GG(1,1,p)



Two stage design

Primary sampling units (PSU) are selected and within each PSU a sample is selected.

Hypothesis: The model includes an additive random effect that corresponds to the PSU of the design.

Within each PSU j, weights \tilde{w}_{ij} are provided for the ultimate unit $i, i \in j$.

- $ightharpoonup n_j = \text{sample size in PSU } j.$
- $w_{ij} = n_j \frac{\tilde{w}_{ij}}{\sum_{k=1}^n \tilde{w}_{kj}} = \frac{\tilde{w}_{ij}}{\tilde{w}_j} =$ canonical weight within primary unit j.
- ightharpoonup observations within PSU j are conditionally independent given random effect V_j ,
- $f_1(y v; \theta)$ = conditional pdf of Y_{ij} given the random effect $V_i = v$.
- within PSU pseudo-log-likelihood = $\ell_i^{pseudo}(\boldsymbol{\theta}; \mathbf{y}_j v \mathbf{1}_{n_j}, x \mathbf{w}_j) = \sum_{i=1}^{n_j} x w_{ij} \log[f_1(y_{ij} v; \boldsymbol{\theta})]$

Two stage design

- ▶ $V = \text{latent unobserved PSU effect with pdf } f_2(v; \Theta).$
- $ightharpoonup ilde{W}_j = ext{provided weight of PSU } j, j = 1, ..., c.$
- $ightharpoonup W_i = \text{canonical weight of PSU } j$,

$$W_j = \sum_{k=1}^c n_k \frac{\tilde{W}_j}{\sum_{k=1}^c n_k \tilde{W}_k} = \frac{\tilde{W}_j}{\tilde{W}_n}.$$

Total sample size :

$$\sum_{j} n_{j} = \sum_{j} n_{j} W_{j}.$$

Two stage design

Total pseudo-log-likelihood =

$$\begin{split} &\ell^{pseudo}(\boldsymbol{\theta},\boldsymbol{\Theta};\{\mathbf{y}_{j},x\mathbf{w}_{j},j=1,..,c\};t\mathbf{W})\\ &=\sum_{j=1}^{c}tW_{j}\log\left[\int_{-\infty}^{\infty}\exp(\ell_{j}^{pseudo}(\boldsymbol{\theta};\mathbf{y}_{j}-v\mathbf{1}_{n_{j}},x\mathbf{w}_{j})f_{2}(v;\boldsymbol{\Theta})dv\right]\\ &=\sum_{j=1}^{c}tW_{j}\log\left[\int_{-\infty}^{\infty}\exp(\ell_{j}^{proper}(\boldsymbol{\theta};\mathbf{y}_{j}-v\mathbf{1}_{n_{j}},x\mathbf{w}_{j})f_{2}(v;\boldsymbol{\Theta})dv\right]\\ &+\sum_{j=1}^{c}tW_{j}\left[C_{1j}(x\mathbf{w}_{j};\boldsymbol{\theta})\right]\\ &=\ell^{proper}(\boldsymbol{\theta},\boldsymbol{\Theta};\{\mathbf{y}_{j},x\mathbf{w}_{j},j=1,..,c\};t\mathbf{W})\\ &+\sum_{j=1}^{c}tW_{j}\left[C_{1j}(x\mathbf{w}_{j};\boldsymbol{\theta})\right]+C_{2}(\{x\mathbf{w}_{j},j=1,...,c\},t\mathbf{W};\boldsymbol{\theta},\boldsymbol{\Theta}) \end{split}$$

Normal distribution - Two stage design

Population model:

- $\bullet \theta = (\beta, \sigma)$
- ▶ $Y_{ij} \sim N(\mathbf{x}_{ij}^t \boldsymbol{\beta} v, \sigma^2), i = 1, ..., n_j$ independent observations with pdf $f_1(y v; \boldsymbol{\theta})$ given random effect $V_i = v$.
- $lackbox{\Theta} = (\eta)$
- ▶ $V_j \sim N(0, \eta^2), j = 1, ..., c$: independent random effects with pdf $f_2(v; \Theta) =$

The model and the within-PSU weighting scheme imply Sampling distribution :

 $(\mathbf{Y}_1,...,\mathbf{Y}_c)$ are independent vectors with

$$\mathbf{Y}_{j} \sim N(\mathbf{X}_{j}^{t}\boldsymbol{\beta}, \Gamma_{j}) \qquad \Gamma_{j} = \frac{\sigma^{2}}{x} \mathrm{diag}(\mathbf{w}_{j})^{-1} + \eta^{2} \mathbf{1} \mathbf{1}^{T}.$$

$$\det(\Gamma_j) = \left(G_j \, \sigma^2 / x\right)^{n_j} \frac{n_j \eta^2 + \sigma^2 / x}{\sigma^2 / x}.$$

 G_i = geometric mean of weights $(w_{ij}, i = 1, ..., n_i) = \mathbf{w}_i$.

Normal distribution - Two stage design

Correction term

$$C(\{x\mathbf{w}_{j}, j=1,...,c\}, t\mathbf{W}; \sigma, \eta) = \sum_{j} tW_{j}C_{1j} + C_{2} = C_{1} + C_{2}$$

$$\begin{aligned} 2C_1 &= -\sum_{j} tW_j n_j \left\{ (x-1) \log \left(2\pi \sigma^2 \right) + [\log(x) + \log(G_j)] \right\} \\ 2C_2 &= \sum_{j} n_j \log(W_j) + (tW_j - 1) \log[\det(\Gamma_j)] \\ &= \sum_{j} n_j [\log(tW_j) + (tW_j - 1) \log(G_i)] \\ &- (\sum_{j} n_j) (t-1) \log(\sigma^2/x) + \sum_{j} (tW_j - 1) \log \left[\frac{n_j \eta^2 + \sigma^2/x}{\sigma^2/x} \right]. \end{aligned}$$

Normal distribution - Two stage design

▶ x = 1 makes C_1 independent of σ i.e.

 $x=1\Longrightarrow \ell_j^{\it pseudo}$ and $\ell_j^{\it proper}$ are equivalent for all j.

- if moreover t=1, C_2 is independent of σ and η in two instances :
 - 1. if $n_j = n$, then $\Gamma_j = \Gamma$ and $\sum_j W_j = c$,

$$2C_2 = n \sum_{j=1}^{c} [\log(W_j)]$$

2. if
$$W_j = 1$$
,

$$2C_2 = 0.$$

In all other cases, the overall log-likelihoods ℓ^{pseudo} and ℓ^{proper} will give different estimates.

Multivariate generalized beta distribution (MGB2) Two stage design

MGB2 distribution (Yang et al., 2010) : a set of n random variables $\mathbf{Y} = (Y_1, ..., Y_n)$ conditionally independent given a random scale parameter Θ , with pdf

$$\mathbf{Y}|\{\Theta=\theta\}\sim GG(a,(\theta^{-1/a}\mathbf{b}),p)$$

 $\Theta \sim invGa(q)$ with pdf

$$g(\theta;q) = \frac{1}{\Gamma(q)} \theta^{-q} e^{-\theta} \frac{1}{\theta}$$

Graf, Marín and Molina (2018) use this setting in the context of small area estimation.

- Θ :latent area effect
- ▶ $log(\mathbf{b}) = \mathbf{X}\boldsymbol{\beta}$: model on scale
- \triangleright a, p and q : shape parameters

MGB2 - two stage

Aim: incorporate weights.

Same setting as in the normal case.

- PSU j: sample size $n_j, j = 1, ..., c$, canonical weights $\mathbf{w}_j = (w_{ij}, i = 1, ..., n_j)$ $\log(b_{ij}) = \mathbf{x}_{ii}^t \boldsymbol{\beta}$
- ightharpoonup PSU canonical weights : W_j
- x and t scaling factors.
- $eglip \ell_j^{proper}$: sum of log-densities $GG(a,(\theta x w_{ij})^{-1/a} b_{ij},pxw_{ij})$
- $ightharpoonup \Theta_j \sim invG(tW_jq)$
- PSU are independent.

MGB2 - two stage

Correction terms

$$C_{1j}(x) = n_{j}(x-1)\log(a) - n_{j}x\log(\Gamma(p)) + \sum_{i=1}^{n_{j}}\log(\Gamma(xw_{ij}p))$$

$$C_{2}(t,x) = c(t-1)\log(a) + \sum_{j=1}^{c} tW_{j}\log\left[\frac{\Gamma(xn_{j}p+q)}{\Gamma(q)\prod_{i=1}^{n_{j}}[\Gamma(xw_{ij}p)]}\right] - \sum_{j=1}^{c}\log\left[\frac{\Gamma(tW_{j}xn_{j}p+tW_{j}q)}{\Gamma(tW_{j}q)\prod_{i=1}^{n_{j}}[\Gamma(tW_{j}xw_{ij}p)]}\right]$$

$$C(t,x) = \sum_{i=1}^{c} tW_{j}C_{1j}(x) + C_{2}(t,x).$$

MGB2 - two stage

- ightharpoonup C(t,x) does not depend on a if and only if t=1 and x=1.
- ▶ C(1,1) does not depend on q, if $W_j = 1$.
- ightharpoonup C(1,1) still depends on p and q, if $n_j=n$.
- ightharpoonup C(1,1) still depends on p and q, if $w_{ij}=1$ but $W_j\neq 1$.

The estimates based on ℓ^{proper} or ℓ^{pseudo} won't coincide, except if all the canonical weights are 1.

Discussion

- Design properties of canonical weights.
- Underestimation of between-cluster variance in Gaussian model mentioned by e.g. Rabe-Hesketh and Skrondal (2006) when the expectation of weighted estimates is computed from the population model.
 - It does not occur if the sampling distribution is used.
- Advantage of having a sampling density over a method of moments.
- Simpler than the sampling density based on modeling the weights.

pseudo-lik: Discussion 33